

EasyVVUQ: Uncertainty intervals for everyone!

EasyVVUQ is a Python library designed to facilitate verification, validation
and uncertainty quantification (VVUQ) for a wide variety of simulations.
It was conceived and developed within the EU funded VECMA [http://www.vecma.eu/]
(Verified Exascale Computing for Multiscale Applications) project.

Goals

The purpose of EasyVVUQ is to make it as easy as possible to implement
advanced techniques for uncertainty quantification for existing
application codes (or workflows).
We do not intend to re-invent the wheel, and plan on always building
upon existing libraries such as
Chaospy [https://chaospy.readthedocs.io/] which focus on providing
statistical functionality.
Our aim is to expose these features in as accessible a way for users
of scientific codes, in particular simulation software targeting HPC
machines.

For technical details please see EasyVVUQ API Reference.

We also provide a range of interactive tutorials within the repository.
This collection changes over time, but can be found
here: https://github.com/UCL-CCS/EasyVVUQ/tree/dev/tutorials .

Another point of reference point are the non-regression tests which
can be found at https://github.com/UCL-CCS/EasyVVUQ/tree/dev/tests .
These are often useful in showing how pieces of the software work.

Table of contents

Contents

	EasyVVUQ installation
	Installation

	Questions & Troubleshooting

	Conceptual basis
	Parameter description

	Campaign

	Elements

	Samplers

	Encoders

	Decoders

	Analysis

Indices and tables

	Index

	Module Index

	Search Page

EasyVVUQ installation

Installation

Note

To use the library you will need Python 3.7+.

Installation should be straight forward:

pip install easyvvuq

To update an existing installation:

pip install easyvvuq --upgrade

Alternatively, to get the most current version, the code can be installed from
Github as follows:

git clone https://github.com/UCL-CCS/EasyVVUQ.git
cd EasyVVUQ
pip install -r requirements.txt
python setup.py install

Note

The above assumes that your default python is Python 3. If
that is not the case replace python with python3 and pip
with pip3.

Depending on your setup you may not have permission to install packages.
In that case, we recommend creating a virtual environment using
conda [https://docs.conda.io/projects/conda/en/latest/user-guide/install/]
or pipenv [https://docs.pipenv.org].

Questions & Troubleshooting

For any problems and questions you might have related to EasyVVUQ, please
feel free to file an https://github.com/UCL-CCS/EasyVVUQ/issues.

Conceptual basis

EasyVVUQ was created as part of the VECMA [http://www.vecma.eu/] project,
and is currently maintained and enhanced as part of the
SEAVEA [https://www.seavea-project.org] project.
The aim of this project was to make state of the art VVUQ algorithms
available for use in HPC applications (and specifically multiscale models).
The basis of making generic tools within VECMA is the idea of Patterns,
which are:

“abstractions that describe, in a non-application and non-domain
specific manner, a workflow or algorithm for conducting validation,
verification, uncertainty quantification or sensitivity analysis”.

Making use of Patterns in practice requires that they are decomposed into
components which can be flexibly combined to implement a range of algorithms.

[image: VVUQ algorithm as connected elements.]
Figure 1: Decomposition of generalized VVUQ workflow into different
functions.
These are implemented as ‘Elements’ in EasyVVUQ.
Rounded boxes are specified by users to tailor general workflows to their
particular use case

EasyVVUQ is designed around a breakdown of such workflows into four distinct
stages (see Figure 1); Sampling, Model Evaluation, result Aggregation,
and Analysis.
In an HPC context the model evaluation step is generally equivalent to the
execution of a (computationally expensive) simulation.
The actual simulation execution is beyond the remit of the package but
EasyVVUQ is designed to wrap around simulation execution, providing functions
to generate input (an Encoder) and to transform simulation output into common
formats for analysis (a Decoder).
Below we describe the components of EasyVVUQ designed to perform each step in
more detail.

Parameter description

The first step in our generalised workflow is a description of the model
parameters and how they might vary in the sampling phase of the VVUQ pattern.
Typically the user will specifying all numerical parameters, the distribution
from which they should be drawn and physically acceptable limits on their
value.

Campaign

EasyVVUQ workflows are coordinated by an object called a Campaign.
This contains a common database, the CampaignDB, which contains
information on the application(s) being analysed alongside the runs
mandated by the sampling algorithm(s) employed. It also stores the
decoded results of the simulations themseleves. The Database is the
central location where all information about your campaign is
kept. The Campaign handles all validation and is transfers
information between each stage of the workflow.

The Basic Tutorial [https://github.com/UCL-CCS/EasyVVUQ/blob/dev/tutorials/basic_tutorial.ipynb]
gives a good hands-on introduction to defining parameters and
creating a campaign.

Elements

Within VECMA software components that can be reused in a wide range of
application scenarios are known as Elements.
Within EasyVVUQ we provide five classes of Elements (Samplers,
Decoders, Encoders, and those providing collation,
for the aggregation step, and Analysis functionality) which we
describe below.

Samplers

A Sampler populates the CampaignDB with a set of run specifications based on
the parameter description provided by the user.
Each Sampler is designed to employs one of a range of algorithms, such as
the Monte Carlo or Quasi Monte Carlo approaches (Sobol, 1998).
They deal with generic information in the sense that all parameters use the
nomenclature and units provided by the user rather than anything specific to
any application or workflow.

Detailed information on the Sampler modules is available here [https://easyvvuq.readthedocs.io/en/dev/_autodoc/easyvvuq.sampling.html].

Encoders

The role of an Encoder is to convert generic parameter descriptions into
inputs (for example configuration files) which can be used in a specific
application.
Included in the base application is a simple templating system in which
values are substituted into a text input file.
For many applications it is envisioned that specific encoders will be
needed and the framework of EasyVVUQ means that any class derived from a
generic Encoder base class is picked up and may be used.
This enables EasyVVUQ to be easily extended for new applications by
experienced users.

Detailed information on the Encoder modules is available here [https://easyvvuq.readthedocs.io/en/dev/_autodoc/easyvvuq.encoders.html].

Decoders

The role of a Decoder is twofold, to record simulation completion in the
CampaignDB and to extract the output information from the simulation runs.
Similarly to an Encoder, a Decoder is designed to be user extendable to
facilitate analysis of a wide range of applications.

The Encoder-Decoder tutorial [https://github.com/UCL-CCS/EasyVVUQ/blob/dev/tutorials/encoder_decoder_tutorial.ipynb]
provides a good introduction to using Encoders and Decoders within EasyVVUQ. Detailed information on the Decoder modules
themselves is available here [https://easyvvuq.readthedocs.io/en/dev/_autodoc/easyvvuq.decoders.html].

Analysis

The final goal of any VVUQ workflow is an analysis which provided information
on the simulation output across a range of runs.
Different types of analysis (for example bootstrapping of multiple runs from
varied initial conditions) are, or will be, provided by EasyVVUQ.

Detailed information on the Analysis modules is available here [https://easyvvuq.readthedocs.io/en/dev/_autodoc/easyvvuq.analysis.html]

 Python Module Index

 e

 		 	

 		
 e	

 	[image: -]
 	
 easyvvuq	

 	
 	
 easyvvuq.actions	

 	
 	
 easyvvuq.actions.action_statuses	

 	
 	
 easyvvuq.actions.execute_kubernetes	

 	
 	
 easyvvuq.actions.execute_local	

 	
 	
 easyvvuq.actions.execute_qcgpj	

 	
 	
 easyvvuq.actions.execute_qcgpj_task	

 	
 	
 easyvvuq.actions.execute_slurm	

 	
 	
 easyvvuq.analysis	

 	
 	
 easyvvuq.analysis.base	

 	
 	
 easyvvuq.analysis.basic_stats	

 	
 	
 easyvvuq.analysis.ensemble_boot	

 	
 	
 easyvvuq.analysis.gp_analyse	

 	
 	
 easyvvuq.analysis.mcmc	

 	
 	
 easyvvuq.analysis.pce_analysis	

 	
 	
 easyvvuq.analysis.qmc_analysis	

 	
 	
 easyvvuq.analysis.results	

 	
 	
 easyvvuq.analysis.sc_analysis	

 	
 	
 easyvvuq.analysis.ssc_analysis	

 	
 	
 easyvvuq.base_element	

 	
 	
 easyvvuq.campaign	

 	
 	
 easyvvuq.comparison	

 	
 	
 easyvvuq.comparison.base	

 	
 	
 easyvvuq.comparison.validate	

 	
 	
 easyvvuq.constants	

 	
 	
 easyvvuq.data_structs	

 	
 	
 easyvvuq.db	

 	
 	
 easyvvuq.db.base	

 	
 	
 easyvvuq.db.sql	

 	
 	
 easyvvuq.decoders	

 	
 	
 easyvvuq.decoders.hdf5	

 	
 	
 easyvvuq.decoders.json	

 	
 	
 easyvvuq.decoders.simple_csv	

 	
 	
 easyvvuq.decoders.yaml	

 	
 	
 easyvvuq.encoders	

 	
 	
 easyvvuq.encoders.copy_encoder	

 	
 	
 easyvvuq.encoders.directory_builder	

 	
 	
 easyvvuq.encoders.generic_template	

 	
 	
 easyvvuq.encoders.jinja_encoder	

 	
 	
 easyvvuq.encoders.multiencoder	

 	
 	
 easyvvuq.params_specification	

 	
 	
 easyvvuq.sampling	

 	
 	
 easyvvuq.sampling.base	

 	
 	
 easyvvuq.sampling.csv_sampler	

 	
 	
 easyvvuq.sampling.dataframe_sampler	

 	
 	
 easyvvuq.sampling.empty	

 	
 	
 easyvvuq.sampling.grid_sampler	

 	
 	
 easyvvuq.sampling.mc_sampler	

 	
 	
 easyvvuq.sampling.mcmc	

 	
 	
 easyvvuq.sampling.pce	

 	
 	
 easyvvuq.sampling.qmc	

 	
 	
 easyvvuq.sampling.quasirandom	

 	
 	
 easyvvuq.sampling.random	

 	
 	
 easyvvuq.sampling.replica_sampler	

 	
 	
 easyvvuq.sampling.sampler_of_samplers	

 	
 	
 easyvvuq.sampling.simplex_stochastic_collocation	

 	
 	
 easyvvuq.sampling.stochastic_collocation	

 	
 	
 easyvvuq.sampling.sweep	

 	
 	
 easyvvuq.utils	

 	
 	
 easyvvuq.utils.db_benchmark	

 	
 	
 easyvvuq.utils.helpers	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Y

A

 	
 	ActionPool (class in easyvvuq.actions.action_statuses)

 	Actions (class in easyvvuq.actions.execute_local)

 	actions (easyvvuq.db.sql.AppTable attribute)

 	active_app (easyvvuq.db.sql.CampaignTable attribute)

 	adapt_dimension() (easyvvuq.analysis.sc_analysis.SCAnalysis method)

 	adapt_locally() (easyvvuq.analysis.ssc_analysis.SSCAnalysis method)

 	adaptation_histogram() (easyvvuq.analysis.sc_analysis.SCAnalysis method)

 	adaptation_table() (easyvvuq.analysis.sc_analysis.SCAnalysis method)

 	add_app() (easyvvuq.campaign.Campaign method)

 	(easyvvuq.db.base.BaseCampaignDB method)

 	(easyvvuq.db.sql.CampaignDB method)

 	add_collate_callback() (easyvvuq.actions.action_statuses.ActionPool method)

 	add_external_runs() (easyvvuq.campaign.Campaign method)

 	add_run() (easyvvuq.db.base.BaseCampaignDB method)

 	add_runs() (easyvvuq.campaign.Campaign method)

 	(easyvvuq.db.sql.CampaignDB method)

 	add_sampler() (easyvvuq.db.base.BaseCampaignDB method)

 	(easyvvuq.db.sql.CampaignDB method)

 	analyse() (easyvvuq.analysis.base.BaseAnalysisElement method)

 	(easyvvuq.analysis.basic_stats.BasicStats method)

 	(easyvvuq.analysis.ensemble_boot.EnsembleBoot method)

 	(easyvvuq.analysis.gp_analyse.GaussianProcessSurrogate method)

 	(easyvvuq.analysis.mcmc.MCMCAnalysis method)

 	(easyvvuq.analysis.pce_analysis.PCEAnalysis method)

 	(easyvvuq.analysis.qmc_analysis.QMCAnalysis method)

 	(easyvvuq.analysis.sc_analysis.SCAnalysis method)

 	(easyvvuq.analysis.ssc_analysis.SSCAnalysis method)

 	(easyvvuq.campaign.Campaign method)

 	
 	analysis_class (easyvvuq.sampling.base.BaseSamplingElement attribute)

 	(easyvvuq.sampling.mc_sampler.MCSampler attribute)

 	(easyvvuq.sampling.mcmc.MCMCSampler attribute)

 	(easyvvuq.sampling.pce.PCESampler attribute)

 	(easyvvuq.sampling.qmc.QMCSampler attribute)

 	(easyvvuq.sampling.random.RandomSampler attribute)

 	(easyvvuq.sampling.replica_sampler.ReplicaSampler attribute)

 	(easyvvuq.sampling.stochastic_collocation.SCSampler attribute)

 	AnalysisResults (class in easyvvuq.analysis.results)

 	app (easyvvuq.db.sql.RunTable attribute)

 	app() (easyvvuq.db.base.BaseCampaignDB method)

 	(easyvvuq.db.sql.CampaignDB method)

 	append_collation_dataframe() (easyvvuq.db.base.BaseCampaignDB method)

 	AppInfo (class in easyvvuq.data_structs)

 	apply_analysis() (easyvvuq.campaign.Campaign method)

 	apply_for_each_sample() (easyvvuq.campaign.Campaign method)

 	AppTable (class in easyvvuq.db.sql)

 	ARRAY (easyvvuq.constants.OutputType attribute)

 	as_completed() (easyvvuq.actions.execute_qcgpj.QCGPJPool method)

B

 	
 	BaseAnalysisElement (class in easyvvuq.analysis.base)

 	BaseCampaignDB (class in easyvvuq.db.base)

 	BaseComparisonElement (class in easyvvuq.comparison.base)

 	BaseElement (class in easyvvuq.base_element)

 	
 	BaseSamplingElement (class in easyvvuq.sampling.base)

 	BasicStats (class in easyvvuq.analysis.basic_stats)

 	BasicSweep (class in easyvvuq.sampling.sweep)

 	benchmark() (in module easyvvuq.utils.db_benchmark)

 	bootstrap() (in module easyvvuq.analysis.ensemble_boot)

C

 	
 	Campaign (class in easyvvuq.campaign)

 	campaign (easyvvuq.db.sql.RunTable attribute)

 	campaign_dir (easyvvuq.campaign.Campaign attribute)

 	(easyvvuq.db.sql.CampaignTable attribute)

 	campaign_dir() (easyvvuq.db.base.BaseCampaignDB method)

 	(easyvvuq.db.sql.CampaignDB method)

 	campaign_dir_prefix (easyvvuq.db.sql.CampaignTable attribute)

 	campaign_exists() (easyvvuq.db.sql.CampaignDB method)

 	CampaignDB (class in easyvvuq.db.sql)

 	CampaignInfo (class in easyvvuq.data_structs)

 	campaigns() (easyvvuq.db.base.BaseCampaignDB method)

 	(easyvvuq.db.sql.CampaignDB method)

 	CampaignTable (class in easyvvuq.db.sql)

 	check_LEC() (easyvvuq.sampling.simplex_stochastic_collocation.SSCSampler method)

 	check_LEC_j() (easyvvuq.sampling.simplex_stochastic_collocation.SSCSampler method)

 	check_local_dir() (in module easyvvuq.data_structs)

 	check_max_quad_level() (easyvvuq.sampling.stochastic_collocation.SCSampler method)

 	check_reference() (in module easyvvuq.data_structs)

 	checkers (easyvvuq.params_specification.EasyVVUQValidator attribute)

 	CleanUp (class in easyvvuq.actions.execute_local)

 	coercers (easyvvuq.params_specification.EasyVVUQValidator attribute)

 	collate() (easyvvuq.actions.action_statuses.ActionPool method)

 	COLLATED (easyvvuq.constants.Status attribute)

 	combination_technique() (easyvvuq.analysis.sc_analysis.SCAnalysis method)

 	compare() (easyvvuq.comparison.base.BaseComparisonElement method)

 	(easyvvuq.comparison.validate.ValidateSimilarity method)

 	
 	compute_1D_points_weights() (easyvvuq.sampling.stochastic_collocation.SCSampler method)

 	compute_comb_coef() (easyvvuq.analysis.sc_analysis.SCAnalysis method)

 	compute_ENO_stencil() (easyvvuq.sampling.simplex_stochastic_collocation.SSCSampler method)

 	compute_ENO_stencil_j() (easyvvuq.sampling.simplex_stochastic_collocation.SSCSampler method)

 	compute_eps_bar_j() (easyvvuq.sampling.simplex_stochastic_collocation.SSCSampler method)

 	compute_i_norm_le_pj() (easyvvuq.sampling.simplex_stochastic_collocation.SSCSampler method)

 	compute_marginal() (easyvvuq.analysis.sc_analysis.SCAnalysis method)

 	compute_probability() (easyvvuq.sampling.simplex_stochastic_collocation.SSCSampler method)

 	compute_Psi() (easyvvuq.sampling.simplex_stochastic_collocation.SSCSampler method)

 	compute_sparse_multi_idx() (easyvvuq.sampling.stochastic_collocation.SCSampler method)

 	compute_stencil_j() (easyvvuq.sampling.simplex_stochastic_collocation.SSCSampler method)

 	compute_sub_simplex_vertices() (easyvvuq.sampling.simplex_stochastic_collocation.SSCSampler method)

 	compute_surplus_k() (easyvvuq.sampling.simplex_stochastic_collocation.SSCSampler method)

 	compute_tensor_prod_u() (easyvvuq.analysis.sc_analysis.SCAnalysis static method)

 	compute_vol() (easyvvuq.sampling.simplex_stochastic_collocation.SSCSampler method)

 	compute_xi_center_j() (easyvvuq.sampling.simplex_stochastic_collocation.SSCSampler method)

 	confidence_interval() (in module easyvvuq.analysis.ensemble_boot)

 	convert_results() (easyvvuq.actions.execute_qcgpj.QCGPJPool method)

 	CopyEncoder (class in easyvvuq.encoders.copy_encoder)

 	create_campaign() (easyvvuq.db.sql.CampaignDB method)

 	create_config_maps() (easyvvuq.actions.execute_kubernetes.ExecuteKubernetes method)

 	create_dir_tree() (easyvvuq.encoders.directory_builder.DirectoryBuilder method)

 	create_volumes() (easyvvuq.actions.execute_kubernetes.ExecuteKubernetes method)

 	CreateRunDirectory (class in easyvvuq.actions.execute_local)

 	CSVSampler (class in easyvvuq.sampling.csv_sampler)

D

 	
 	DAFSILAS() (in module easyvvuq.sampling.simplex_stochastic_collocation)

 	DataFrameSampler (class in easyvvuq.sampling.dataframe_sampler)

 	DBInfoTable (class in easyvvuq.db.sql)

 	Decode (class in easyvvuq.actions.execute_local)

 	default_setters (easyvvuq.params_specification.EasyVVUQValidator attribute)

 	describe() (easyvvuq.analysis.results.AnalysisResults method)

 	deserialize() (easyvvuq.params_specification.ParamsSpecification static method)

 	
 	DirectoryBuilder (class in easyvvuq.encoders.directory_builder)

 	dist() (easyvvuq.comparison.validate.ValidateSimilarity method)

 	(easyvvuq.comparison.validate.ValidateSimilarityHellinger method)

 	(easyvvuq.comparison.validate.ValidateSimilarityJensenShannon method)

 	(easyvvuq.comparison.validate.ValidateSimilarityWasserstein method)

 	draw_samples() (easyvvuq.campaign.Campaign method)

 	dump() (easyvvuq.db.sql.CampaignDB method)

E

 	
 	easyvvuq (module)

 	easyvvuq.actions (module)

 	easyvvuq.actions.action_statuses (module)

 	easyvvuq.actions.execute_kubernetes (module)

 	easyvvuq.actions.execute_local (module)

 	easyvvuq.actions.execute_qcgpj (module)

 	easyvvuq.actions.execute_qcgpj_task (module)

 	easyvvuq.actions.execute_slurm (module)

 	easyvvuq.analysis (module)

 	easyvvuq.analysis.base (module)

 	easyvvuq.analysis.basic_stats (module)

 	easyvvuq.analysis.ensemble_boot (module)

 	easyvvuq.analysis.gp_analyse (module)

 	easyvvuq.analysis.mcmc (module)

 	easyvvuq.analysis.pce_analysis (module)

 	easyvvuq.analysis.qmc_analysis (module)

 	easyvvuq.analysis.results (module)

 	easyvvuq.analysis.sc_analysis (module)

 	easyvvuq.analysis.ssc_analysis (module)

 	easyvvuq.base_element (module)

 	easyvvuq.campaign (module)

 	easyvvuq.comparison (module)

 	easyvvuq.comparison.base (module)

 	easyvvuq.comparison.validate (module)

 	easyvvuq.constants (module)

 	easyvvuq.data_structs (module)

 	easyvvuq.db (module)

 	easyvvuq.db.base (module)

 	easyvvuq.db.sql (module)

 	easyvvuq.decoders (module)

 	easyvvuq.decoders.hdf5 (module)

 	easyvvuq.decoders.json (module)

 	easyvvuq.decoders.simple_csv (module)

 	easyvvuq.decoders.yaml (module)

 	easyvvuq.encoders (module)

 	easyvvuq.encoders.copy_encoder (module)

 	easyvvuq.encoders.directory_builder (module)

 	easyvvuq.encoders.generic_template (module)

 	easyvvuq.encoders.jinja_encoder (module)

 	easyvvuq.encoders.multiencoder (module)

 	easyvvuq.params_specification (module)

 	easyvvuq.sampling (module)

 	easyvvuq.sampling.base (module)

 	easyvvuq.sampling.csv_sampler (module)

 	easyvvuq.sampling.dataframe_sampler (module)

 	easyvvuq.sampling.empty (module)

 	easyvvuq.sampling.grid_sampler (module)

 	easyvvuq.sampling.mc_sampler (module)

 	easyvvuq.sampling.mcmc (module)

 	easyvvuq.sampling.pce (module)

 	easyvvuq.sampling.qmc (module)

 	easyvvuq.sampling.quasirandom (module)

 	easyvvuq.sampling.random (module)

 	easyvvuq.sampling.replica_sampler (module)

 	easyvvuq.sampling.sampler_of_samplers (module)

 	easyvvuq.sampling.simplex_stochastic_collocation (module)

 	easyvvuq.sampling.stochastic_collocation (module)

 	easyvvuq.sampling.sweep (module)

 	
 	easyvvuq.utils (module)

 	easyvvuq.utils.db_benchmark (module)

 	easyvvuq.utils.helpers (module)

 	easyvvuq_deserialize() (in module easyvvuq.utils.helpers)

 	easyvvuq_serialize() (in module easyvvuq.utils.helpers)

 	easyvvuq_version (easyvvuq.data_structs.CampaignInfo attribute)

 	(easyvvuq.db.sql.CampaignTable attribute)

 	EasyVVUQBasicTemplate (class in easyvvuq.actions.execute_qcgpj)

 	EasyVVUQParallelTemplate (class in easyvvuq.actions.execute_qcgpj)

 	EasyVVUQValidator (class in easyvvuq.params_specification)

 	element_category() (easyvvuq.analysis.base.BaseAnalysisElement method)

 	(easyvvuq.base_element.BaseElement method)

 	(easyvvuq.comparison.base.BaseComparisonElement method)

 	(easyvvuq.sampling.base.BaseSamplingElement method)

 	element_name() (easyvvuq.analysis.base.BaseAnalysisElement method)

 	(easyvvuq.analysis.basic_stats.BasicStats method)

 	(easyvvuq.analysis.ensemble_boot.EnsembleBoot method)

 	(easyvvuq.analysis.pce_analysis.PCEAnalysis method)

 	(easyvvuq.analysis.qmc_analysis.QMCAnalysis method)

 	(easyvvuq.analysis.sc_analysis.SCAnalysis method)

 	(easyvvuq.analysis.ssc_analysis.SSCAnalysis method)

 	(easyvvuq.base_element.BaseElement method)

 	(easyvvuq.comparison.validate.ValidateSimilarityHellinger method)

 	(easyvvuq.comparison.validate.ValidateSimilarityJensenShannon method)

 	(easyvvuq.comparison.validate.ValidateSimilarityWasserstein method)

 	(easyvvuq.sampling.base.BaseSamplingElement method)

 	element_version() (easyvvuq.analysis.base.BaseAnalysisElement method)

 	(easyvvuq.analysis.basic_stats.BasicStats method)

 	(easyvvuq.analysis.ensemble_boot.EnsembleBoot method)

 	(easyvvuq.analysis.pce_analysis.PCEAnalysis method)

 	(easyvvuq.analysis.qmc_analysis.QMCAnalysis method)

 	(easyvvuq.analysis.sc_analysis.SCAnalysis method)

 	(easyvvuq.analysis.ssc_analysis.SSCAnalysis method)

 	(easyvvuq.base_element.BaseElement method)

 	(easyvvuq.comparison.validate.ValidateSimilarityHellinger method)

 	(easyvvuq.comparison.validate.ValidateSimilarityJensenShannon method)

 	(easyvvuq.comparison.validate.ValidateSimilarityWasserstein method)

 	(easyvvuq.encoders.copy_encoder.CopyEncoder method)

 	(easyvvuq.encoders.directory_builder.DirectoryBuilder method)

 	(easyvvuq.sampling.random.RandomSampler method)

 	EmptySampler (class in easyvvuq.sampling.empty)

 	Encode (class in easyvvuq.actions.execute_local)

 	encode() (easyvvuq.encoders.copy_encoder.CopyEncoder method)

 	(easyvvuq.encoders.directory_builder.DirectoryBuilder method)

 	(easyvvuq.encoders.generic_template.GenericEncoder method)

 	(easyvvuq.encoders.jinja_encoder.JinjaEncoder method)

 	(easyvvuq.encoders.multiencoder.MultiEncoder method)

 	ENCODED (easyvvuq.constants.Status attribute)

 	ensemble_bootstrap() (in module easyvvuq.analysis.ensemble_boot)

 	EnsembleBoot (class in easyvvuq.analysis.ensemble_boot)

 	execute() (easyvvuq.campaign.Campaign method)

 	ExecuteKubernetes (class in easyvvuq.actions.execute_kubernetes)

 	ExecuteLocal (class in easyvvuq.actions.execute_local)

 	ExecutePython (class in easyvvuq.actions.execute_local)

 	ExecuteQCGPJ (class in easyvvuq.actions.execute_qcgpj)

 	ExecuteSLURM (class in easyvvuq.actions.execute_slurm)

 	execution_info (easyvvuq.db.sql.RunTable attribute)

 	executor (easyvvuq.actions.execute_qcgpj.QCGPJPool attribute)

F

 	
 	finalise() (easyvvuq.actions.execute_kubernetes.ExecuteKubernetes method)

 	(easyvvuq.actions.execute_local.Actions method)

 	(easyvvuq.actions.execute_local.CleanUp method)

 	(easyvvuq.actions.execute_local.Decode method)

 	(easyvvuq.actions.execute_local.Encode method)

 	(easyvvuq.actions.execute_local.ExecuteLocal method)

 	(easyvvuq.actions.execute_local.ExecutePython method)

 	(easyvvuq.actions.execute_qcgpj.ExecuteQCGPJ method)

 	(easyvvuq.actions.execute_slurm.ExecuteSLURM method)

 	find_boundary_simplices() (easyvvuq.sampling.simplex_stochastic_collocation.SSCSampler method)

 	
 	find_pmax() (easyvvuq.sampling.simplex_stochastic_collocation.SSCSampler method)

 	find_simplex() (easyvvuq.sampling.simplex_stochastic_collocation.Tri1D method)

 	find_simplices() (easyvvuq.sampling.simplex_stochastic_collocation.SSCSampler method)

 	finished() (easyvvuq.actions.execute_kubernetes.ExecuteKubernetes method)

 	(easyvvuq.actions.execute_local.Actions method)

 	(easyvvuq.actions.execute_local.CleanUp method)

 	(easyvvuq.actions.execute_local.Decode method)

 	(easyvvuq.actions.execute_local.Encode method)

 	(easyvvuq.actions.execute_local.ExecuteLocal method)

 	(easyvvuq.actions.execute_local.ExecutePython method)

 	(easyvvuq.actions.execute_qcgpj.ExecuteQCGPJ method)

G

 	
 	GaussianProcessSurrogate (class in easyvvuq.analysis.gp_analyse)

 	GaussianProcessSurrogateResults (class in easyvvuq.analysis.gp_analyse)

 	generalized_pce_coefs() (easyvvuq.analysis.sc_analysis.SCAnalysis method)

 	generate_grid() (easyvvuq.sampling.stochastic_collocation.SCSampler method)

 	GenericEncoder (class in easyvvuq.encoders.generic_template)

 	get_active_app() (easyvvuq.campaign.Campaign method)

 	(easyvvuq.db.sql.CampaignDB method)

 	get_active_sampler() (easyvvuq.campaign.Campaign method)

 	get_adaptation_errors() (easyvvuq.analysis.sc_analysis.SCAnalysis method)

 	get_campaign_id() (easyvvuq.db.base.BaseCampaignDB method)

 	(easyvvuq.db.sql.CampaignDB method)

 	get_campaign_runs_dir() (easyvvuq.campaign.Campaign method)

 	get_collation_dataframe() (easyvvuq.db.base.BaseCampaignDB method)

 	get_collation_result() (easyvvuq.campaign.Campaign method)

 	get_custom_template() (in module easyvvuq.encoders.generic_template)

 	get_Delaunay() (easyvvuq.sampling.simplex_stochastic_collocation.SSCSampler method)

 	get_distribution() (easyvvuq.analysis.pce_analysis.PCEAnalysisResults method)

 	(easyvvuq.analysis.results.AnalysisResults method)

 	get_invalid_runs() (easyvvuq.campaign.Campaign method)

 	get_items() (easyvvuq.sampling.base.Vary method)

 	get_keys() (easyvvuq.sampling.base.Vary method)

 	
 	get_last_analysis() (easyvvuq.campaign.Campaign method)

 	get_moments() (easyvvuq.analysis.sc_analysis.SCAnalysis method)

 	(easyvvuq.analysis.ssc_analysis.SSCAnalysis method)

 	get_num_runs() (easyvvuq.db.base.BaseCampaignDB method)

 	(easyvvuq.db.sql.CampaignDB method)

 	get_param_names() (easyvvuq.sampling.grid_sampler.Grid_Sampler method)

 	get_params() (easyvvuq.analysis.gp_analyse.GaussianProcessSurrogateResults method)

 	get_pce_sobol_indices() (easyvvuq.analysis.sc_analysis.SCAnalysis method)

 	get_pce_stats() (easyvvuq.analysis.sc_analysis.SCAnalysis method)

 	get_restart_dict() (easyvvuq.encoders.copy_encoder.CopyEncoder method)

 	(easyvvuq.encoders.directory_builder.DirectoryBuilder method)

 	get_results() (easyvvuq.db.sql.CampaignDB method)

 	get_run_status() (easyvvuq.db.base.BaseCampaignDB method)

 	(easyvvuq.db.sql.CampaignDB method)

 	get_sample_array() (easyvvuq.analysis.sc_analysis.SCAnalysis method)

 	(easyvvuq.analysis.ssc_analysis.SSCAnalysis method)

 	get_sampler_id() (easyvvuq.db.sql.CampaignDB method)

 	get_samples() (easyvvuq.analysis.qmc_analysis.QMCAnalysis method)

 	get_sobol_indices() (easyvvuq.analysis.sc_analysis.SCAnalysis method)

 	get_uncertainty_amplification() (easyvvuq.analysis.sc_analysis.SCAnalysis method)

 	get_values() (easyvvuq.sampling.base.Vary method)

 	Grid_Sampler (class in easyvvuq.sampling.grid_sampler)

H

 	
 	HaltonSampler (class in easyvvuq.sampling.quasirandom)

 	
 	HDF5 (class in easyvvuq.decoders.hdf5)

I

 	
 	id (easyvvuq.db.sql.AppTable attribute)

 	(easyvvuq.db.sql.CampaignTable attribute)

 	(easyvvuq.db.sql.DBInfoTable attribute)

 	(easyvvuq.db.sql.RunTable attribute)

 	(easyvvuq.db.sql.SamplerTable attribute)

 	ignore_runs() (easyvvuq.campaign.Campaign method)

 	IGNORED (easyvvuq.constants.Status attribute)

 	init_db() (easyvvuq.campaign.Campaign method)

 	init_grid() (easyvvuq.sampling.simplex_stochastic_collocation.SSCSampler method)

 	inputs (easyvvuq.sampling.replica_sampler.ReplicaSampler attribute)

 	INVALID (easyvvuq.constants.Status attribute)

 	is_finite() (easyvvuq.sampling.base.BaseSamplingElement method)

 	(easyvvuq.sampling.csv_sampler.CSVSampler method)

 	(easyvvuq.sampling.dataframe_sampler.DataFrameSampler method)

 	(easyvvuq.sampling.empty.EmptySampler method)

 	(easyvvuq.sampling.grid_sampler.Grid_Sampler method)

 	(easyvvuq.sampling.mcmc.MCMCSampler method)

 	(easyvvuq.sampling.pce.PCESampler method)

 	(easyvvuq.sampling.qmc.QMCSampler method)

 	(easyvvuq.sampling.random.RandomSampler method)

 	(easyvvuq.sampling.replica_sampler.ReplicaSampler method)

 	(easyvvuq.sampling.sampler_of_samplers.MultiSampler method)

 	(easyvvuq.sampling.simplex_stochastic_collocation.SSCSampler method)

 	(easyvvuq.sampling.stochastic_collocation.SCSampler method)

 	(easyvvuq.sampling.sweep.BasicSweep method)

 	
 	is_restartable() (easyvvuq.encoders.multiencoder.MultiEncoder method)

 	iterate() (easyvvuq.campaign.Campaign method)

 	iteration (easyvvuq.db.sql.RunTable attribute)

 	(easyvvuq.sampling.base.BaseSamplingElement attribute)

 	(easyvvuq.sampling.replica_sampler.ReplicaSampler attribute)

J

 	
 	JinjaEncoder (class in easyvvuq.encoders.jinja_encoder)

 	
 	JSONDecoder (class in easyvvuq.decoders.json)

L

 	
 	lagrange_poly() (in module easyvvuq.analysis.sc_analysis)

 	LHCSampler (class in easyvvuq.sampling.quasirandom)

 	list_runs() (easyvvuq.campaign.Campaign method)

 	load_samples() (easyvvuq.analysis.ssc_analysis.SSCAnalysis method)

 	load_state() (easyvvuq.analysis.sc_analysis.SCAnalysis method)

 	(easyvvuq.analysis.ssc_analysis.SSCAnalysis method)

 	(easyvvuq.sampling.simplex_stochastic_collocation.SSCSampler method)

 	(easyvvuq.sampling.stochastic_collocation.SCSampler method)

 	
 	local_execute() (in module easyvvuq.actions.execute_local)

 	look_ahead() (easyvvuq.sampling.stochastic_collocation.SCSampler method)

M

 	
 	MCMCAnalysis (class in easyvvuq.analysis.mcmc)

 	MCMCAnalysisResults (class in easyvvuq.analysis.mcmc)

 	MCMCSampler (class in easyvvuq.sampling.mcmc)

 	MCSampler (class in easyvvuq.sampling.mc_sampler)

 	
 	merge_accepted_and_admissible() (easyvvuq.analysis.sc_analysis.SCAnalysis method)

 	multi_index_tuple_parser() (in module easyvvuq.utils.helpers)

 	MultiEncoder (class in easyvvuq.encoders.multiencoder)

 	MultiSampler (class in easyvvuq.sampling.sampler_of_samplers)

N

 	
 	n_dimensions (easyvvuq.sampling.simplex_stochastic_collocation.SSCSampler attribute)

 	n_elements (easyvvuq.sampling.simplex_stochastic_collocation.SSCSampler attribute)

 	n_samples (easyvvuq.sampling.pce.PCESampler attribute)

 	(easyvvuq.sampling.qmc.QMCSampler attribute)

 	(easyvvuq.sampling.simplex_stochastic_collocation.SSCSampler attribute)

 	(easyvvuq.sampling.stochastic_collocation.SCSampler attribute)

 	n_samples() (easyvvuq.sampling.base.BaseSamplingElement method)

 	(easyvvuq.sampling.csv_sampler.CSVSampler method)

 	(easyvvuq.sampling.dataframe_sampler.DataFrameSampler method)

 	(easyvvuq.sampling.grid_sampler.Grid_Sampler method)

 	(easyvvuq.sampling.mcmc.MCMCSampler method)

 	(easyvvuq.sampling.random.RandomSampler method)

 	(easyvvuq.sampling.replica_sampler.ReplicaSampler method)

 	(easyvvuq.sampling.sampler_of_samplers.MultiSampler method)

 	(easyvvuq.sampling.sweep.BasicSweep method)

 	
 	name (easyvvuq.db.sql.AppTable attribute)

 	(easyvvuq.db.sql.CampaignTable attribute)

 	NEW (easyvvuq.constants.Status attribute)

 	next_level_sparse_grid() (easyvvuq.sampling.stochastic_collocation.SCSampler method)

 	next_run (easyvvuq.db.sql.DBInfoTable attribute)

 	normalization_rules (easyvvuq.params_specification.EasyVVUQValidator attribute)

O

 	
 	OutputType (class in easyvvuq.constants)

P

 	
 	params (easyvvuq.db.sql.AppTable attribute)

 	(easyvvuq.db.sql.RunTable attribute)

 	ParamsSpecification (class in easyvvuq.params_specification)

 	parse_sim_output() (easyvvuq.decoders.hdf5.HDF5 method)

 	(easyvvuq.decoders.json.JSONDecoder method)

 	(easyvvuq.decoders.simple_csv.SimpleCSV method)

 	PCEAnalysis (class in easyvvuq.analysis.pce_analysis)

 	PCEAnalysisResults (class in easyvvuq.analysis.pce_analysis)

 	PCESampler (class in easyvvuq.sampling.pce)

 	plot_chains() (easyvvuq.analysis.mcmc.MCMCAnalysisResults method)

 	
 	plot_grid() (easyvvuq.analysis.sc_analysis.SCAnalysis method)

 	(easyvvuq.analysis.ssc_analysis.SSCAnalysis method)

 	plot_hist() (easyvvuq.analysis.mcmc.MCMCAnalysisResults method)

 	plot_moments() (easyvvuq.analysis.results.AnalysisResults method)

 	plot_sobols_first() (easyvvuq.analysis.results.AnalysisResults method)

 	plot_sobols_treemap() (easyvvuq.analysis.results.AnalysisResults method)

 	plot_stat_convergence() (easyvvuq.analysis.sc_analysis.SCAnalysis method)

 	powerset() (in module easyvvuq.analysis.sc_analysis)

 	process_run() (easyvvuq.params_specification.ParamsSpecification method)

 	progress() (easyvvuq.actions.action_statuses.ActionPool method)

Q

 	
 	QCGPJPool (class in easyvvuq.actions.execute_qcgpj)

 	QMCAnalysis (class in easyvvuq.analysis.qmc_analysis)

 	QMCAnalysisResults (class in easyvvuq.analysis.qmc_analysis)

 	
 	QMCSampler (class in easyvvuq.sampling.qmc)

 	qoi (easyvvuq.sampling.replica_sampler.ReplicaSampler attribute)

 	quadrature() (easyvvuq.analysis.sc_analysis.SCAnalysis method)

R

 	
 	RandomSampler (class in easyvvuq.sampling.random)

 	recollate() (easyvvuq.campaign.Campaign method)

 	relocate() (easyvvuq.campaign.Campaign method)

 	(easyvvuq.db.sql.CampaignDB method)

 	remove_start_of_file() (in module easyvvuq.utils.helpers)

 	replace_actions() (easyvvuq.campaign.Campaign method)

 	(easyvvuq.db.sql.CampaignDB method)

 	ReplicaSampler (class in easyvvuq.sampling.replica_sampler)

 	rerun() (easyvvuq.campaign.Campaign method)

 	reset() (easyvvuq.sampling.replica_sampler.ReplicaSampler method)

 	result (easyvvuq.db.sql.RunTable attribute)

 	resume_campaign() (easyvvuq.db.sql.CampaignDB method)

 	resurrect_app() (easyvvuq.db.base.BaseCampaignDB method)

 	(easyvvuq.db.sql.CampaignDB method)

 	
 	resurrect_sampler() (easyvvuq.db.base.BaseCampaignDB method)

 	(easyvvuq.db.sql.CampaignDB method)

 	rules (easyvvuq.params_specification.EasyVVUQValidator attribute)

 	run() (easyvvuq.db.base.BaseCampaignDB method)

 	(easyvvuq.db.sql.CampaignDB method)

 	run_dir (easyvvuq.db.sql.RunTable attribute)

 	run_ids() (easyvvuq.db.sql.CampaignDB method)

 	run_name (easyvvuq.db.sql.RunTable attribute)

 	RunInfo (class in easyvvuq.data_structs)

 	runs() (easyvvuq.db.base.BaseCampaignDB method)

 	(easyvvuq.db.sql.CampaignDB method)

 	runs_dir (easyvvuq.db.sql.CampaignTable attribute)

 	runs_dir() (easyvvuq.db.base.BaseCampaignDB method)

 	(easyvvuq.db.sql.CampaignDB method)

 	RunTable (class in easyvvuq.db.sql)

S

 	
 	saltelli() (easyvvuq.sampling.mc_sampler.MCSampler method)

 	SAMPLE (easyvvuq.constants.OutputType attribute)

 	SAMPLE_ARRAY (easyvvuq.constants.OutputType attribute)

 	sample_inputs() (easyvvuq.sampling.simplex_stochastic_collocation.SSCSampler method)

 	sample_simplex() (easyvvuq.sampling.simplex_stochastic_collocation.SSCSampler method)

 	sample_simplex_edge() (easyvvuq.sampling.simplex_stochastic_collocation.SSCSampler method)

 	sampler (easyvvuq.db.sql.CampaignTable attribute)

 	(easyvvuq.db.sql.RunTable attribute)

 	(easyvvuq.db.sql.SamplerTable attribute)

 	sampler_id (easyvvuq.sampling.base.BaseSamplingElement attribute)

 	sampler_name (easyvvuq.sampling.csv_sampler.CSVSampler attribute)

 	(easyvvuq.sampling.dataframe_sampler.DataFrameSampler attribute)

 	(easyvvuq.sampling.empty.EmptySampler attribute)

 	(easyvvuq.sampling.grid_sampler.Grid_Sampler attribute)

 	(easyvvuq.sampling.mc_sampler.MCSampler attribute)

 	(easyvvuq.sampling.mcmc.MCMCSampler attribute)

 	(easyvvuq.sampling.pce.PCESampler attribute)

 	(easyvvuq.sampling.qmc.QMCSampler attribute)

 	(easyvvuq.sampling.quasirandom.HaltonSampler attribute)

 	(easyvvuq.sampling.quasirandom.LHCSampler attribute)

 	(easyvvuq.sampling.random.RandomSampler attribute)

 	(easyvvuq.sampling.replica_sampler.ReplicaSampler attribute)

 	(easyvvuq.sampling.sampler_of_samplers.MultiSampler attribute)

 	(easyvvuq.sampling.simplex_stochastic_collocation.SSCSampler attribute)

 	(easyvvuq.sampling.stochastic_collocation.SCSampler attribute)

 	(easyvvuq.sampling.sweep.BasicSweep attribute)

 	SamplerTable (class in easyvvuq.db.sql)

 	save_state() (easyvvuq.analysis.sc_analysis.SCAnalysis method)

 	(easyvvuq.analysis.ssc_analysis.SSCAnalysis method)

 	(easyvvuq.sampling.simplex_stochastic_collocation.SSCSampler method)

 	(easyvvuq.sampling.stochastic_collocation.SCSampler method)

 	SC2PCE() (easyvvuq.analysis.sc_analysis.SCAnalysis method)

 	sc_expansion() (easyvvuq.analysis.sc_analysis.SCAnalysis method)

 	SCAnalysis (class in easyvvuq.analysis.sc_analysis)

 	SCAnalysisResults (class in easyvvuq.analysis.sc_analysis)

 	SCSampler (class in easyvvuq.sampling.stochastic_collocation)

 	serialize() (easyvvuq.params_specification.ParamsSpecification method)

 	set_active_app() (easyvvuq.db.sql.CampaignDB method)

 	set_app() (easyvvuq.campaign.Campaign method)

 	set_dir_for_run() (easyvvuq.db.base.BaseCampaignDB method)

 	(easyvvuq.db.sql.CampaignDB method)

 	set_pmax_cutoff() (easyvvuq.sampling.simplex_stochastic_collocation.SSCSampler method)

 	set_run_statuses() (easyvvuq.db.base.BaseCampaignDB method)

 	(easyvvuq.db.sql.CampaignDB method)

 	set_sampler() (easyvvuq.campaign.Campaign method)

 	(easyvvuq.db.sql.CampaignDB method)

 	set_sqlite_pragma() (in module easyvvuq.db.sql)

 	set_wrapper() (easyvvuq.actions.execute_local.Actions method)

 	setdiff2d() (in module easyvvuq.analysis.sc_analysis)

 	(in module easyvvuq.sampling.stochastic_collocation)

 	
 	shutdown() (easyvvuq.actions.execute_qcgpj.QCGPJPool method)

 	SimpleCSV (class in easyvvuq.decoders.simple_csv)

 	sobol_bootstrap() (easyvvuq.analysis.qmc_analysis.QMCAnalysis method)

 	sobols_first() (easyvvuq.analysis.results.AnalysisResults method)

 	sobols_second() (easyvvuq.analysis.results.AnalysisResults method)

 	sobols_total() (easyvvuq.analysis.results.AnalysisResults method)

 	SSCAnalysis (class in easyvvuq.analysis.ssc_analysis)

 	SSCAnalysisResults (class in easyvvuq.analysis.ssc_analysis)

 	SSCSampler (class in easyvvuq.sampling.simplex_stochastic_collocation)

 	start() (easyvvuq.actions.action_statuses.ActionPool method)

 	(easyvvuq.actions.execute_kubernetes.ExecuteKubernetes method)

 	(easyvvuq.actions.execute_local.Actions method)

 	(easyvvuq.actions.execute_local.CleanUp method)

 	(easyvvuq.actions.execute_local.CreateRunDirectory method)

 	(easyvvuq.actions.execute_local.Decode method)

 	(easyvvuq.actions.execute_local.Encode method)

 	(easyvvuq.actions.execute_local.ExecuteLocal method)

 	(easyvvuq.actions.execute_local.ExecutePython method)

 	(easyvvuq.actions.execute_qcgpj.ExecuteQCGPJ method)

 	(easyvvuq.actions.execute_slurm.ExecuteSLURM method)

 	Status (class in easyvvuq.constants)

 	status (easyvvuq.db.sql.RunTable attribute)

 	store_result() (easyvvuq.db.sql.CampaignDB method)

 	store_results() (easyvvuq.db.sql.CampaignDB method)

 	submit() (easyvvuq.actions.execute_qcgpj.QCGPJPool method)

 	succeeded() (easyvvuq.actions.execute_kubernetes.ExecuteKubernetes method)

 	(easyvvuq.actions.execute_local.Actions method)

 	(easyvvuq.actions.execute_local.CleanUp method)

 	(easyvvuq.actions.execute_local.CreateRunDirectory method)

 	(easyvvuq.actions.execute_local.Decode method)

 	(easyvvuq.actions.execute_local.ExecuteLocal method)

 	(easyvvuq.actions.execute_local.ExecutePython method)

 	(easyvvuq.actions.execute_qcgpj.ExecuteQCGPJ method)

 	succeeeded() (easyvvuq.actions.execute_local.Encode method)

 	SUMMARY (easyvvuq.constants.OutputType attribute)

 	supported_stats() (easyvvuq.analysis.pce_analysis.PCEAnalysisResults method)

 	(easyvvuq.analysis.qmc_analysis.QMCAnalysisResults method)

 	(easyvvuq.analysis.results.AnalysisResults method)

 	(easyvvuq.analysis.sc_analysis.SCAnalysisResults method)

 	(easyvvuq.analysis.ssc_analysis.SSCAnalysisResults method)

 	surrogate() (easyvvuq.analysis.gp_analyse.GaussianProcessSurrogateResults method)

 	(easyvvuq.analysis.pce_analysis.PCEAnalysisResults method)

 	(easyvvuq.analysis.results.AnalysisResults method)

 	(easyvvuq.analysis.sc_analysis.SCAnalysis method)

 	(easyvvuq.analysis.sc_analysis.SCAnalysisResults method)

 	(easyvvuq.analysis.ssc_analysis.SSCAnalysis method)

 	(easyvvuq.analysis.ssc_analysis.SSCAnalysisResults method)

 	(easyvvuq.sampling.simplex_stochastic_collocation.SSCSampler method)

T

 	
 	template() (easyvvuq.actions.execute_qcgpj.EasyVVUQBasicTemplate static method)

 	(easyvvuq.actions.execute_qcgpj.EasyVVUQParallelTemplate static method)

 	to_dict() (easyvvuq.data_structs.AppInfo method)

 	(easyvvuq.data_structs.CampaignInfo method)

 	(easyvvuq.data_structs.RunInfo method)

 	
 	TRACK (easyvvuq.constants.OutputType attribute)

 	Tri1D (class in easyvvuq.sampling.simplex_stochastic_collocation)

U

 	
 	undo_merge() (easyvvuq.analysis.sc_analysis.SCAnalysis method)

 	update() (easyvvuq.sampling.mcmc.MCMCSampler method)

 	(easyvvuq.sampling.replica_sampler.ReplicaSampler method)

 	
 	update_Delaunay() (easyvvuq.sampling.simplex_stochastic_collocation.SSCSampler method)

 	update_sampler() (easyvvuq.db.base.BaseCampaignDB method)

 	(easyvvuq.db.sql.CampaignDB method)

 	update_surrogate() (easyvvuq.analysis.ssc_analysis.SSCAnalysis method)

V

 	
 	ValidateSimilarity (class in easyvvuq.comparison.validate)

 	ValidateSimilarityHellinger (class in easyvvuq.comparison.validate)

 	ValidateSimilarityJensenShannon (class in easyvvuq.comparison.validate)

 	
 	ValidateSimilarityWasserstein (class in easyvvuq.comparison.validate)

 	validation_rules (easyvvuq.params_specification.EasyVVUQValidator attribute)

 	Vary (class in easyvvuq.sampling.base)

W

 	
 	w_j() (easyvvuq.sampling.simplex_stochastic_collocation.SSCSampler method)

 	
 	wrap_iterable() (in module easyvvuq.sampling.sweep)

Y

 	
 	YAMLDecoder (class in easyvvuq.decoders.yaml)

UQI : EasyVVUQ + QCG-PilotJob

For most VVUQ scenarios, a large number of jobs is required to be executed and analysed.
For execution side, users mostly use the HPC resources.
Within VECMAtk, we introduced the QCG-PilotJob (QCG-PJ) toolkit to flexibly and efficiently execute
a large number of simulations on the HPC resources.
In order to make it straightforward for EasyVVUQ users to use the QCG-PilotJob functionality and benefit from
efficient processing of their jobs on HPC resources, the two tools has been integrated.

Preparation:

In order to use QCG-PilotJob as the job executor within EasyVVUQ, you need to import the following module:

from easyvvuq.actions import QCGPJPool

and then to use QCGPJPool object as an execution engine for the campaign, which is done by the passing it to the
execute method. QCGPJPool will submit all the jobs directly to the QCG-PilotJob toolkit:

with QCGPJPool() as qcgpj:
 app_campaign.execute(pool=qcgpj).collate()

Advance Usage:

By default, using QCGPJPool() without any input arguments will load the default setting for QCG-PilotJob pool.
For more advanced execution scenarios, such as setting the number of cores to execute the target application,
or set the total number of requested compute nodes to be used during the execution of jobs,
you need to provide extra input parameters to the QCGPJPool() constructor.

	For more information see:

	
	Jupyter Notebook tutorial displaying QCG-PilotJob usage
from EasyVVUQ [https://github.com/UCL-CCS/EasyVVUQ/blob/dev/tutorials/basic_tutorial_qcgpj.ipynb]

	QCG-PilotJob documentation [https://qcg-pilotjob.readthedocs.io]

EasyVVUQ API Reference

You will find the full documentation for the EasyVVUQ API below.

	easyvvuq package
	Subpackages
	easyvvuq.actions package
	Submodules

	easyvvuq.actions.action_statuses module

	easyvvuq.actions.execute_kubernetes module

	easyvvuq.actions.execute_local module

	easyvvuq.actions.execute_qcgpj module

	easyvvuq.actions.execute_qcgpj_task module

	easyvvuq.actions.execute_slurm module

	Module contents

	easyvvuq.analysis package
	Submodules

	easyvvuq.analysis.base module

	easyvvuq.analysis.basic_stats module

	easyvvuq.analysis.ensemble_boot module

	easyvvuq.analysis.gp_analyse module

	easyvvuq.analysis.mcmc module

	easyvvuq.analysis.pce_analysis module

	easyvvuq.analysis.qmc_analysis module

	easyvvuq.analysis.results module

	easyvvuq.analysis.sc_analysis module

	easyvvuq.analysis.ssc_analysis module

	Module contents

	easyvvuq.comparison package
	Submodules

	easyvvuq.comparison.base module

	easyvvuq.comparison.validate module

	Module contents

	easyvvuq.db package
	Submodules

	easyvvuq.db.base module

	easyvvuq.db.sql module

	Module contents

	easyvvuq.decoders package
	Submodules

	easyvvuq.decoders.hdf5 module

	easyvvuq.decoders.json module

	easyvvuq.decoders.simple_csv module

	easyvvuq.decoders.yaml module

	Module contents

	easyvvuq.encoders package
	Submodules

	easyvvuq.encoders.copy_encoder module

	easyvvuq.encoders.directory_builder module

	easyvvuq.encoders.generic_template module

	easyvvuq.encoders.jinja_encoder module

	easyvvuq.encoders.multiencoder module

	Module contents

	easyvvuq.sampling package
	Submodules

	easyvvuq.sampling.base module

	easyvvuq.sampling.csv_sampler module

	easyvvuq.sampling.dataframe_sampler module

	easyvvuq.sampling.empty module

	easyvvuq.sampling.grid_sampler module

	easyvvuq.sampling.mc_sampler module

	easyvvuq.sampling.mcmc module

	easyvvuq.sampling.pce module

	easyvvuq.sampling.qmc module

	easyvvuq.sampling.quasirandom module

	easyvvuq.sampling.random module

	easyvvuq.sampling.replica_sampler module

	easyvvuq.sampling.sampler_of_samplers module

	easyvvuq.sampling.simplex_stochastic_collocation module

	easyvvuq.sampling.stochastic_collocation module

	easyvvuq.sampling.sweep module

	Module contents

	easyvvuq.utils package
	Submodules

	easyvvuq.utils.db_benchmark module

	easyvvuq.utils.helpers module

	Module contents

	Submodules

	easyvvuq.base_element module

	easyvvuq.campaign module

	easyvvuq.constants module

	easyvvuq.data_structs module

	easyvvuq.params_specification module

	Module contents

easyvvuq.actions package

Submodules

easyvvuq.actions.action_statuses module

Implements ActionPool - a thin wrapper around the Python Executor interface
that is meant to simplify the execution of actions and retrieval of results.
This object is instantiated by the Campaign. The user would never instantiate it
manually. The user does interact with it to track the progress of execution.

	
class easyvvuq.actions.action_statuses.ActionPool(campaign, actions, inits, sequential=False)

	Bases: object

A class that handles the execution of Actions.

	Parameters

	
	campaign (Campaign) – An instance of an EasyVVUQ campaign.

	actions (Actions) – An instance of Actions containing things to be done as part of the simulation.

	inits (iterable) – Initial inputs to be passed to each Actions representing a sample. Will usually contain
dictionaries with the following information: {‘run_id’: …, ‘campaign_dir’: …,
‘run_info’: …}.

	sequential (bool) – Will run the actions sequentially.

	
add_collate_callback(fn)

	Adds a callback to be called after collation is done.

	Parameters

	fn - A callable that takes previous as it’s only input.

	
collate(progress_bar=False)

	A command that will block until all Futures in the pool have finished.
It will also store the results gather from Actions in the database.

	Parameters

	progress_bar (bool) – Whether to show progress bar

	
progress()

	Some basic stats about the action statuses status.

	Returns

	A dictionary with four keys - ‘ready’, ‘active’ and ‘finished’, ‘failed’.
Values under “ready” correspond to Actions waiting for execution, “active”
corresponds to the number of currently running tasks.

	Return type

	dict

	
start(pool=None)

	Start the actions.

	Parameters

	pool (An Executor instance (e.g. ThreadPoolExecutor))

	Returns

	Starts execution and returns a reference to itself for tracking progress
and for collation.

	Return type

	ActionPool

easyvvuq.actions.execute_kubernetes module

Provides an action element to execute a simulation on a Kubernetes
cluster and retrieve the output. The successful use of this actions
requires that the Kubernetes cluster is properly set-up on the users
system. Namely the ~/.kube/config file should contain valid
information. Exact details will depend on the cloud service
provider. Otherwise this action works similarly to how ExecuteLocal
works. The difference is that the simulations are executed on a
Kubernetes cluster. The input files are passed to the Pods via the
ConfigMap mechanism. This probably limits the size of the
configuration files but this can be alleviated with some kind of a
pre-processing script on the Pod side. Likewise, output from the
simulation is retrieved using the Kubernetes log mechanism. Therefore
the simulation output needs to be printed to stdout on the Pod
side. Again, if the simulation produces complicated or large output
you should extract the quantitities of interest on the Pod using some
kind of script and print them to stdout.

Examples

	
class easyvvuq.actions.execute_kubernetes.ExecuteKubernetes(image, command, input_file_names=None, output_file_name=None)

	Bases: object

	Parameters

	
	image (str) – Name of the repository e.g. orbitfold/easyvvuq:tagname.

	command (str) – A command to run the simulation from within the container.

	input_file_names (list) – A list of input files.

	output_file_names (list) – A list of output files.

	
create_config_maps(file_names)

	Create Kubernetes ConfigMaps for the input files to the simulation.

	Parameters

	file_names (list) – Will go through every filename in this list and create a Kubernetes
ConfigMap with it’s contents.

	
create_volumes(file_names, dep)

	Create descriptions of Volumes that will hold the input files.

	Parameters

	filenames (list) – A list of file names to be mounted under /config/ in the running image.

	
finalise()

	Will read the logs from the Kubernetes pod, output them to a file and
delete the Kubernetes resources we have allocated.

	
finished()

	Will return True if the pod has finished, otherwise will return False.

	
start(previous=None)

	Will create the Kubernetes pod and hence start the action.

	Parameters

	previous (dict) – Data from previous Action.

	Returns

	Data from previous Action appended with data from this Action.

	Return type

	dict

	
succeeded()

	Will return True if the pod has finished successfully, otherwise will return False.
If the job hasn’t finished yet will return False.

easyvvuq.actions.execute_local module

This module provides an assortment of actions generally concerned with executing
simulations locally. Some Actions will also be useful when using Dask.

	
class easyvvuq.actions.execute_local.Actions(*args)

	Bases: object

	
finalise()

	

	
finished()

	

	
set_wrapper(wrapper)

	Adds a wrapper to be called on each Action.

	Parameters

	wrapper (callable) – A function to call on each Action. Should pass through the return of the
start method.

	
start(previous=None)

	

	
succeeded()

	

	
class easyvvuq.actions.execute_local.CleanUp

	Bases: object

	
finalise()

	

	
finished()

	

	
start(previous=None)

	

	
succeeded()

	

	
class easyvvuq.actions.execute_local.CreateRunDirectory(root, flatten=False)

	Bases: object

Creates a directory structure for storing simulation input and output files.

	Parameters

	
	root (str) – Root directory to create a directory structure in.

	flatten (bool) – If set to True will result in a flat directory structure (each run gets a directory
under root). If left as False will create a hierarchical structure. This is useful
so as not to overload the filesystem.

	
start(previous=None)

	Starts the action.

Will read a run_id from a dictionary supplied by the previous Action.
Will then create a directory structure based on the numerical value of the run_id.

	Returns

	A dictionary to be passed to the following Action.

	Return type

	dict

	
succeeded()

	Has the Action finished successfully.

	Returns

	True if Action completed successfully. False otherwise.

	Return type

	bool

	
class easyvvuq.actions.execute_local.Decode(decoder)

	Bases: object

	
finalise()

	

	
finished()

	

	
start(previous=None)

	

	
succeeded()

	

	
class easyvvuq.actions.execute_local.Encode(encoder)

	Bases: object

	
finalise()

	

	
finished()

	

	
start(previous=None)

	

	
succeeeded()

	

	
class easyvvuq.actions.execute_local.ExecuteLocal(full_cmd, stdout=None, stderr=None)

	Bases: object

	
finalise()

	Performs clean-up if necessary. In this case it isn’t. I think.

	
finished()

	

	
start(previous=None)

	

	
succeeded()

	Will return True if the process finished successfully.
It judges based on the return code and will return False
if that code is not zero.

	
class easyvvuq.actions.execute_local.ExecutePython(function)

	Bases: object

	
finalise()

	

	
finished()

	

	
start(previous=None)

	

	
succeeded()

	

	
easyvvuq.actions.execute_local.local_execute(encoder, command, decoder, root='/tmp')

	A helper function for a simple local execution.
It will create a directory under your specified root folder, encode the sampler output, execute a command
and decode the results of the simulation.

	Parameters

	
	encoder (Encoder) – an encoder to use

	command (list of str) – a command to run your simulation (same as argument to popen, e.g. [‘ls’, ‘-al’])

	decoder (Decoder) – a decoder to use

	root (str) – root folder, for example ‘/tmp’ or if you want to use ram based filesystem it could be ‘/dev/shm’

	Returns

	

	Return type

	Actions

easyvvuq.actions.execute_qcgpj module

	
class easyvvuq.actions.execute_qcgpj.EasyVVUQBasicTemplate

	Bases: qcg.pilotjob.executor_api.templates.qcgpj_template.QCGPJTemplate

A basic template class for submission of QCG-PilotJob tasks that run on a single core

The class can be used only for the most simple use-cases. For example it doesn’t allow
to specify resource requirements. Thus, for more advanced use-cases, it is recommended to provide custom
implementation of QCGPJTemplate. For complete reference of QCG-PilotJob task’s description parameters
please look at https://qcg-pilotjob.readthedocs.io/en/latest/fileinterface.html#submit

	
static template() → Tuple[str, Dict[str, Any]]

	

	
class easyvvuq.actions.execute_qcgpj.EasyVVUQParallelTemplate

	Bases: qcg.pilotjob.executor_api.templates.qcgpj_template.QCGPJTemplate

A template class for submission of QCG-PilotJob tasks that run on exact number cores / nodes

With this class it is possible to define basic resource requirements for tasks.
For advanced use-cases, it is recommended to provide custom implementation of QCGPJTemplate.
For complete reference of QCG-PilotJob task’s description parameters
please look at https://qcg-pilotjob.readthedocs.io/en/latest/fileinterface.html#submit

	
static template() → Tuple[str, Dict[str, Any]]

	

	
class easyvvuq.actions.execute_qcgpj.ExecuteQCGPJ(action)

	Bases: object

A utility decorator over action that marks the action as configured for parallel execution by QCG-PilotJob
Currently it has no influence on the processing.

	Parameters

	action (Action) – an action that will be decorated in order to enable parallel execution inside a QCG-PilotJob task.

	
finalise()

	

	
finished()

	

	
start(previous=None)

	

	
succeeded()

	

	
class easyvvuq.actions.execute_qcgpj.QCGPJPool(qcgpj_executor=None, template=None, template_params=None, polling_interval=1)

	Bases: concurrent.futures._base.Executor

A Pool that manages execution of actions with QCG-PilotJob.

	Parameters

	
	qcgpj_executor (str) – An instance of QCGPJExecutor. If not provided, an instance of QCGPJExecutor
with default settings will be created

	template (QCGPJTemplate) – An object which contains only a single method template that returns a tuple.
The first element of a tuple should be a string representing a QCG-PilotJob task’s description
with placeholders (identifiers preceded by $ symbol)
and the second a dictionary that assigns default values for selected placeholders.
If not provided, a default EasyVVUQBasicTemplate will be used

	template_params (dict) – A dictionary that contains parameters that will be used to substitute placeholders
defined in the template

	polling_interval (int) – An interval between queries to the QCG-PilotJob Manager service about state of the tasks, in seconds.

	
as_completed(futures)

	Checks for the status of features and yields those that are finished

	
convert_results(result_qcgpj)

	Converts results generated by QCG-PilotJob task to EasyVVUQ-compatible form

The method loads results data from a file where it was stored by QCG-PilotJob’s task
and then converts it to a dictionary which can be further processed by EasyVVUQ.

	Parameters

	result_qcgpj (list or None) – A list of results returned by a QCG-PilotJob task (only the first element will be used),
or None if the task hasn’t finished with the status SUCCEED

	Returns

	

	Return type

	A dictionary containing results

	
executor

	Returns current QCGPJExecutor instance.

It gives you an access to QCG-PilotJob Manager instance, which in turn can be used to
get information about the QCG-PilotJob execution environment.

	
shutdown(**kwargs)

	Clean-up the resources associated with the QCGPJPool.

	
submit(fn, *args, **kwargs)

	Submits a callable to be executed by QCG-PilotJob.

Schedules the callable to be executed inside a QCG-PilotJob’s task and returns
a Future representing the execution of the callable.

	Returns

	

	Return type

	QCGPJFuture representing the given call.

easyvvuq.actions.execute_qcgpj_task module

easyvvuq.actions.execute_slurm module

Provides a simple action element for interacting with a SLURM job. This lets you
execute your simulation on a SLURM cluster.

	
class easyvvuq.actions.execute_slurm.ExecuteSLURM(template_script, variable)

	Bases: object

An Action to launch and track the execution of a SLURM job.

	Parameters

	
	template_script (str) – Filename of a file containing the script template.

	variable (str) – A string to be replaced with the directory in which the job is meant to be executed.
This is to be used to make sure that the simulation can find the correct input files and knows
where to put output files.

	
finalise()

	Performs clean-up if necessary. In this case it isn’t. I think.

	
start(previous=None)

	Start the SLURM job.

	Parameters

	previous (dict) – A dictionary containing information provided by previously executed actions.

Module contents

This module contains implementations of various Actions. Actions in
EasyVVUQ are responsible for anything that is related to the execution of
the simulation. That includes: actually executing the simulation, preparing
the input files, parsing the output files, creating directory structures
necessary to execute the simulation, cleaning up after, delegating work
to external execution back-ends such as Dask, etc.

easyvvuq.analysis package

Submodules

easyvvuq.analysis.base module

Provides a base class for all analysis elements.

	
class easyvvuq.analysis.base.BaseAnalysisElement

	Bases: easyvvuq.base_element.BaseElement

Base class for all EasyVVUQ analysis elements.

	
analyse(data_frame=None)

	Perform analysis on input data_frame.

	Parameters

	data_frame (pandas DataFrame) – Input data for analysis.

	Returns

	

	Return type

	AnalysisResults instance

	
element_category()

	Element type for logging and verification.

	Returns

	Element category.

	Return type

	str

	
element_name()

	Name for this element for logging purposes.

	Returns

	Element name.

	Return type

	str

	
element_version()

	Version of this element for logging purposes.

	Returns

	Element version.

	Return type

	str

easyvvuq.analysis.basic_stats module

Provides analysis element for basic statistical analysis.

The analysis is based on pandas.DataFrame.describe() function.

	
class easyvvuq.analysis.basic_stats.BasicStats(groupby=None, qoi_cols=None)

	Bases: easyvvuq.analysis.base.BaseAnalysisElement

	
analyse(data_frame=None)

	Perform the basis stats analysis on the input data_frame.

Analysis is based on pandas.Dataframe.describe and results in
values for: count, mean, std, min, max and 25%, 50% & 75% percentiles
for each value in the analysis.

The data_frame is grouped according to self.groupby if specified and
analysis is performed on the columns selected in self.qoi_cols if set.

	Parameters

	data_frame (pandas.DataFrame) – Summary data produced through collation of simulation output.

	Returns

	Basic statistic for selected columns and groupings of data.

	Return type

	pandas.DataFrame

	
element_name()

	Name for this element for logging purposes

	
element_version()

	Version of this element for logging purposes

easyvvuq.analysis.ensemble_boot module

Provides analysis element for ensemble bootstrapping analysis.

	
class easyvvuq.analysis.ensemble_boot.EnsembleBoot(groupby=[], qoi_cols=[], stat_func=<function mean>, alpha=0.05, sample_size=None, n_boot_samples=1000, pivotal=False, stat_name='boot')

	Bases: easyvvuq.analysis.base.BaseAnalysisElement

	
analyse(data_frame=None)

	Perform bootstrapping analysis on the input data_frame.

The data_frame is grouped according to self.groupby if specified and
analysis is performed on the columns selected in self.qoi_cols if set.

	Parameters

	data_frame (pandas.DataFrame) – Summary data produced through collation of simulation output.

	Returns

	Basic statistic for selected columns and groupings of data.

	Return type

	pandas.DataFrame

	
element_name()

	Name for this element for logging purposes

	
element_version()

	Version of this element for logging purposes

	
easyvvuq.analysis.ensemble_boot.bootstrap(data, stat_func, alpha=0.05, sample_size=None, n_samples=1000, pivotal=False)

	
	Parameters

	
	data (pandas.DataFrame) – Input data to be analysed.

	stat_func (function) – Statistical function to be applied to data for bootstrapping.

	alpha (float) – Produce estimate of 100.0*(1-alpha) confidence interval.

	sample_size (int) – Size of the sample to be drawn from the input data.

	n_samples (int) – Number of times samples are to be drawn from the input data.

	pivotal (bool) – Use the pivotal method? Default to percentile method.

	Returns

	
	float – Value of the bootstrap statistic

	float – Highest value of the confidence interval

	float – Lowest value of the confidence interval

	
easyvvuq.analysis.ensemble_boot.confidence_interval(dist, value, alpha, pivotal=False)

	Get the bootstrap confidence interval for a given distribution.

	Parameters

	
	dist – Array containing distribution of bootstrap results.

	value – Value of statistic for which we are calculating error bars.

	alpha – The alpha value for the confidence intervals.

	pivotal – Use the pivotal method? Default to percentile method.

	Returns

	
	float – Value of the bootstrap statistic

	float – Highest value of the confidence interval

	float – Lowest value of the confidence interval

	
easyvvuq.analysis.ensemble_boot.ensemble_bootstrap(data, groupby=[], qoi_cols=[], stat_func=<function mean>, alpha=0.05, sample_size=None, n_samples=1000, pivotal=False, stat_name='boot')

	Perform bootstrapping analysis on input data.

	Parameters

	
	data (pandas.DataFrame) – DataFrame to be analysed.

	groupby (list or None) – Columns to use to group the data in analyse method before
calculating stats.

	qoi_cols (list or None) – Columns of quantities of interest (for which stats will be
calculated).

	stat_func (function) – Statistical function to be applied to data for bootstrapping.

	alpha (float, default=0.05) – Produce estimate of 100.0*(1-alpha) confidence interval.

	sample_size (int) – Size of the sample to be drawn from the input data.

	n_samples (int, default=1000) – Number of times samples are to be drawn from the input data.

	pivotal (bool, default=False) – Use the pivotal method? Default to percentile method.

	stat_name (str, default=’boot’) – Name to use to describe columns containing output statistic (for example
‘mean’).

	Returns

	Description of input data using bootstrap statistic and high/low
confidence intervals.

	Return type

	pandas.DataFrame

easyvvuq.analysis.gp_analyse module

Will create a Gaussian Process surrogate of your model. For
the sampler you can use the random sampler or the quasi-random
sampler. Don’t forget to set the analysis class to GaussianProcessSurrogate
as is shown in the example below.

This uses the Gaussian Process model from sklearn.

Examples

>>> campaign = uq.Campaign(name='surrogate')
>>> sampler = uq.sampling.RandomSampler(
 vary = {"Pe": cp.Uniform(100.0, 200.0), "f": cp.Uniform(0.95, 1.05)}
 max_num=100, analysis_class=uq.analysis.GaussianProcessSurrogate)
>>> campaign.add_app(name="sc", params=params, actions=actions)
>>> campaign.set_sampler(sampler)
>>> campaign.execute().collate()
>>> results = campaign.analyse(qoi_cols=output_columns)
>>> surrogate = results.surrogate()
>>> surrogate({'Pe' : 110.0, 'f': 1.0})

	
class easyvvuq.analysis.gp_analyse.GaussianProcessSurrogate(sampler, qoi_cols, **kwargs)

	Bases: easyvvuq.analysis.base.BaseAnalysisElement

	
analyse(data_frame=None)

	Construct a Gaussian Process surrogate based on data in data_frame.

	Parameters

	
	data_frame (pandas.DataFrame) – Data which you want to use to fit the Gaussian Process to.

	kwargs (keyword arguments) – These arguments will be passed to sklearn’s GaussianProcessRegressor.
For details on what this could be, please see

	Returns

	GaussianProcessSurrogateResults instance. Used to interact with the surrogate
model and to possibly access other functionality provided by the fitted model.

	Return type

	easyvvuq.analysis.gp.GaussianProcessSurrogateResults

	
class easyvvuq.analysis.gp_analyse.GaussianProcessSurrogateResults(gp, parameters, qoi)

	Bases: easyvvuq.analysis.results.AnalysisResults

Gaussian process surrogate results class. You would never
create this manually in normal use. It is meant to be returned as the
result of GaussianProcessSurrogate analyse method.

	Parameters

	
	gps (list) – This will be one GP model for each coordinate of a vector QoI.

	parameters (list) – A list of input parameter names.

	qoi (str) – Output variable name.

	
get_params()

	

	
surrogate()

	Returns the GP surrogate model as a Python function.

	Returns

	Returns a function that takes a dictionary and returns a dictionary.
These dictionaries use the same format as Encoder and Decoder used
to construct the surrogate.

	Return type

	function

easyvvuq.analysis.mcmc module

Analysis element for the Markov Chain Monte Carlo (MCMC) method.
For more details on the method see the easyvvuq.sampling.MonteCarloSampler class.
The analysis part of Markov Chain Monte Carlo consists of approximating the distribution
from the results obtained by evaluating the samples.

	
class easyvvuq.analysis.mcmc.MCMCAnalysis(sampler)

	Bases: easyvvuq.analysis.base.BaseAnalysisElement

The analysis part of the MCMC method in EasyVVUQ

	Parameters

	sampler (MCMCSampler) – An instance of MCMCSampler used to generate MCMC samples.

	
analyse(df)

	Performs some pre-processing on the chains in order to be able to construct
the histograms or other methods of distribution estimation.

	Parameters

	df (DataFrame) – DataFrame with the results obtained by evaluating the samples generated by the
MCMC sampler.

	
class easyvvuq.analysis.mcmc.MCMCAnalysisResults(chains)

	Bases: easyvvuq.analysis.results.AnalysisResults

The analysis results class for MCMC. You will not need to instantiate this
class manually.

	Parameters

	chains (dict) – A dictionary with pandas DataFrame that correspond to an MCMC chain each.
A chain consists of points that MCMC has visited. From this a distribution
of the input variables can be constructed by means of a simple histogram.

	
plot_chains(input_parameter, chain=None)

	Will plot the chains with the input parameter value in the y axis.

	Parameters

	
	input_parameter (str) – Input parameter name.

	chain (int, optional) – The chain number of the chain to plot.

	
plot_hist(input_parameter, chain=None, skip=0, merge=True)

	Will plot a histogram for a given input parameter.

	Parameters

	
	input_parameter (str) – An input parameter name to draw the histogram for.

	chain (int, optional) – Index of a chain to be plotted.

	skip (int) – How many steps to skip (for getting rid of burn-in).

	merge (bool) – If set to True will use all chains to construct the histogram.

easyvvuq.analysis.pce_analysis module

Analysis element for polynomial chaos expansion (PCE). We use ChaosPy
under the hood for this functionality.

	
class easyvvuq.analysis.pce_analysis.PCEAnalysis(sampler=None, qoi_cols=None, sampling=False)

	Bases: easyvvuq.analysis.base.BaseAnalysisElement

	
analyse(data_frame=None)

	Perform PCE analysis on input data_frame.

	Parameters

	data_frame (pandas DataFrame) – Input data for analysis.

	Returns

	Use it to get the sobol indices and other information.

	Return type

	PCEAnalysisResults

	
element_name()

	Name for this element for logging purposes.

	Returns

	“PCE_Analysis”

	Return type

	str

	
element_version()

	Version of this element for logging purposes.

	Returns

	Element version.

	Return type

	str

	
class easyvvuq.analysis.pce_analysis.PCEAnalysisResults(raw_data=None, samples=None, qois=None, inputs=None)

	Bases: easyvvuq.analysis.qmc_analysis.QMCAnalysisResults

Analysis results for the PCEAnalysis class.

	
get_distribution(qoi)

	Returns a distribution for the given qoi.

	Parameters

	qoi (str) – QoI name

	Returns

	

	Return type

	A ChaosPy PDF

	
supported_stats()

	Types of statistics supported by the describe method.

	Returns

	

	Return type

	list of str

	
surrogate()

	Return a PCE surrogate model.

	Returns

	
	A function that takes a dictionary of parameter - value pairs and returns

	a dictionary with the results (same output as decoder).

easyvvuq.analysis.qmc_analysis module

Analysis element for Quasi-Monte Carlo (QMC) sensitivity analysis.

Please refer to the article below for the basic approach used here.
https://en.wikipedia.org/wiki/Variance-based_sensitivity_analysis

	
class easyvvuq.analysis.qmc_analysis.QMCAnalysis(sampler, qoi_cols=None)

	Bases: easyvvuq.analysis.base.BaseAnalysisElement

	
analyse(data_frame)

	Perform QMC analysis on a given pandas DataFrame.

	Parameters

	data_frame (pandas DataFrame) – Input data for analysis.

	Returns

	AnalysisResults object for QMC.

	Return type

	easyvvuq.analysis.qmc.QMCAnalysisResults

	
element_name()

	Name for this element.

	Returns

	“QMC_Analysis”

	Return type

	str

	
element_version()

	Version of this element.

	Returns

	Element version.

	Return type

	str

	
get_samples(data_frame)

	Converts the Pandas dataframe into a dictionary.

	Parameters

	data_frame (pandas DataFrame) – the EasyVVUQ Pandas dataframe from collation.

	Returns

	A dictionary with the QoI names as keys.
Each element is a list of code evaluations.

	Return type

	dict

	
sobol_bootstrap(samples, alpha=0.05, n_samples=1000)

	Computes the first order and total order Sobol indices using Saltelli’s
method. To assess the sampling inaccuracy, bootstrap confidence intervals
are also computed.

Reference: A. Saltelli, Making best use of model evaluations to compute
sensitivity indices, Computer Physics Communications, 2002.

	Parameters

	
	samples (list) – The samples for a given QoI.

	alpha (float) – The (1 - alpha) * 100 confidence interval parameter. The default is 0.05.

	n_samples (int) – The number of bootstrap samples. The default is 1000.

	Returns

	
	sobols_first_dict, conf_first_dict, sobols_total_dict, conf_total_dict

	dictionaries containing the first- and total-order Sobol indices for all

	parameters, and (1-alpha)*100 lower and upper confidence bounds.

	
class easyvvuq.analysis.qmc_analysis.QMCAnalysisResults(raw_data=None, samples=None, qois=None, inputs=None)

	Bases: easyvvuq.analysis.results.AnalysisResults

Analysis results for the QMCAnalysis Method. Refer to the AnalysisResults base class
documentation for details on using it.

	
supported_stats()

	Types of statistics supported by the describe method.

	Returns

	

	Return type

	list of str

easyvvuq.analysis.results module

Represents the results obtained during the analysis stage.
All the analysis classes should implement this in a way that makes
most sense. Provides a more unified interface for accessing the results
in a variety of formats (e.g. NumPy arrays or pandas DataFrames). This module
also provides a variety of ways to display results as well as a way to access
surrogate functionality.

	
class easyvvuq.analysis.results.AnalysisResults(raw_data=None, samples=None, qois=None, inputs=None)

	Bases: object

Contains the analysis results.

	Parameters

	
	raw_data (obj) – An arbitrary object that contains raw analysis data.

	samples (pandas DataFrame) – Collated samples.

	qois (list of str) – List of qoi names used during the analysis.

	inputs (list of str) – List of input names used during the analysis.

	
describe(qoi=None, statistic=None)

	Returns descriptive statistics.

Examples

>>> results.describe()
 g h
 0 1 2 0 1
mean 0.500000 0.500000 1.000000 0.250000 0.693787
var 0.083333 0.083333 0.166667 0.048611 0.068236
std 0.288675 0.288675 0.408248 0.220479 0.261220
10% 0.100897 0.099462 0.441589 0.019049 0.276504
90% 0.896960 0.899417 1.544624 0.584600 0.974707
min 0.000041 0.000005 0.016687 0.000016 -0.008642
max 0.999998 0.999873 1.993517 0.985350 1.024599

>>> result.describe('h')
 h
 0 1
mean 0.250000 0.693787
var 0.048611 0.068236
std 0.220479 0.261220
10% 0.019049 0.276504
90% 0.584600 0.974707
min 0.000016 -0.008642
max 0.985350 1.024599

>>> results.describe('h', 'var')
array([0.04861111, 0.06823568])

	Parameters

	
	qoi (str or None) – if not None it is the name of the quantity of interest

	statistic (str or None) – if not None it is the name of the statistic, currently supported ones
are: [‘mean’, ‘var’, ‘std’, ‘10%’, ‘90%’, ‘min’, ‘max’, ‘median’]

	Returns

	If both quantity of interest and the statistic are specified will return
an array with the values for that statistic. Otherwise will return a DataFrame
with more data.

	Return type

	DataFrame or array

	
get_distribution(qoi)

	Returns a distribution for the given qoi.

	Parameters

	qoi (str) – QoI name

	Returns

	

	Return type

	A ChaosPy distribution

	
plot_moments(qoi, ylabel=None, xlabel=None, xvalues=None, alpha=0.2, filename=None, dpi=None, ax=None)

	Plot statistical moments for this analysis.

	Parameters

	
	qoi (str) – a vector quantity of interest for which sobol indices will be plotted

	ylabel (str or None) – if None will use “Values”

	xlabel (str or None) – if None will use the name of the qoi

	xvalues (array or None) – x-axis coordiante if None will use range(len(qoi_values)))

	alpha (float) – transparency amount

	filename (str or None) – if None will try to open a plotting window on-screen, otherwise will
write the plot to this file, with the type determined by the extension specified

	dpi (int) – dots per inch, quality of the image if a raster format was chosen

	ax (matplotlib axes object, default None) – if None, plots to a new axes, otherwise plot to existing axes ax

	Returns

	the actual axes plotted to

	Return type

	matplotlib axes object

	
plot_sobols_first(qoi, inputs=None, withdots=False, ylabel=None, xlabel=None, xvalues=None, filename=None, dpi=None, ax=None)

	Plot first order sobol indices.

	Parameters

	
	qoi (str) – a vector quantity of interest for which sobol indices will be plotted

	inputs (list of str or None) – list of inputs to plot if None will use all input variables

	withdots (bool) – if True will add shapes on top of the lines in the plot for visual clarity

	ylabel (str or None) – if None will use “First Order Sobol Index”

	xlabel (str or None) – if None will use the name of the qoi

	xvalues (array or None) – x-axis coordiante if None will use range(len(qoi_values))

	filename (str or None) – if None will try to open a plotting window on-screen, otherwise will write the plot to this file, with the type determined by the extension specified

	dpi (int) – dots per inch, quality of the image if a raster format was chosen

	ax (matplotlib axes object, default None) – if None, plots to a new axes, otherwise plot to existing axes ax

	Returns

	the actual axes plotted to

	Return type

	matplotlib axes object

	
plot_sobols_treemap(qoi, figsize=(10, 10), ax=None, filename=None, dpi=None)

	Plot sobols first and second order indices in a hierarchical treemap format.

	Parameters

	
	qoi (str) – Name of the quantity of interest.

	figsize (tuple) – A tuple with two integers representing figure size in inches.

	ax (matplotlib) – Matplotlib axis to plot on.

	filename (str) – Filename to write the plot to. If left None will display to screen.

	dpi (int) – Dots per inches. Only used when writing to file.

	
sobols_first(qoi=None, input_=None)

	Return first order sensitivity indices.

	Parameters

	
	qoi (str or tuple) – The name of the quantity of interest or None.
Use a tuple of the form (qoi, index) where index is integer
that means the coordinate index of a vector qoi.

	input_ (str) – The name of the input parameter or None.

Examples

>>> results.sobols_first()
{'f': {'x1': array([0.610242]), 'x2': array([0.26096511])}}
>>> results.sobols_first('f')
{'x1': array([0.610242]), 'x2': array([0.26096511])}
>>> results.sobols_first('f', 'x1')
array([0.610242])
>>> results_vectors.sobols_first(('g', 2))
{'x1': array([0.5]), 'x2': array([0.5])}

	Returns

	If both qoi and input_ are specified will return a dictionary,
otherwise will return an array.

	Return type

	dict or array

	
sobols_second(qoi=None, input_=None)

	Return second order sensitivity indices.

	Parameters

	
	qoi (str or tuple) – The name of the quantity of interest or None.
Use a tuple of the form (qoi, index) where index is integer
that means the coordinate index of a vector qoi.

	input_ (str) – The name of the input parameter or None.

Examples

>>> results.sobols_second('a')
{'F': {'L': array([0.000121]),
'a': array([0.00695338]),
'D': array([0.00141272])},
'L': {'F': array([0.000121]),
'a': array([0.00012737]),
'D': array([0.00012716])},
'a': {'F': array([0.00695338]),
'L': array([0.00012737]),
'D': array([0.00730415])},
'D': {'F': array([0.00141272]),
'L': array([0.00012716]),
'a': array([0.00730415])}}
>>> results.sobols_second('g1', 'L')
{'F': array([0.000121]), 'a': array([0.00012737]), 'D': array([0.00012716])}

	Returns

	Will always return a dictionary unlike first order sobol indices. Because
the index is specified by a pair of inputs. The dictionary will include
all inputs but input_.

	Return type

	dict

	
sobols_total(qoi=None, input_=None)

	Returns total order sensitivity indices.

	Parameters

	
	qoi (str or tuple) – The name of the quantity of interest or None.
Use a tuple of the form (qoi, index) where index is integer
that means the coordinate index of a vector qoi.

	input_ (str) – The name of the input parameter or None.

Examples

>>> results.sobols_total('g1')
{'F': array([0.14299044]),
'L': array([0.01247877]),
'a': array([0.7105291]),
'D': array([0.15018883])}
>>> results.sobols_total('g1', 'F')
array([0.14299044])

	Returns

	If both qoi and input_ are specified will return a dictionary,
otherwise will return an array.

	Return type

	dict or array

	
supported_stats()

	Returns a list of descriptive statistics that the method reports.

Examples

>>> results.supported_stats()
['min', 'max', '10%', '90%', '1%', '99%', 'median', 'mean', 'var', 'std']

	Returns

	A list of statistics that can then be passed to the describe method.

	Return type

	list of str

	
surrogate()

	Returns the surrogate model as a function from parameter dictionary
to output dictionary. This only needs to be implemented if the analysis
method in question provides surrogate models.

	Returns

	Returns a function that takes a dictionary and returns a dictionary.
These dictionaries use the same format as Encoder and Decoder used
to construct the surrogate.

	Return type

	function

easyvvuq.analysis.sc_analysis module

ANALYSIS CLASS FOR THE SC SAMPLER

	
class easyvvuq.analysis.sc_analysis.SCAnalysis(sampler=None, qoi_cols=None)

	Bases: easyvvuq.analysis.base.BaseAnalysisElement

	
SC2PCE(samples, qoi, verbose=True, **kwargs)

	Computes the Polynomials Chaos Expansion coefficients from the SC
expansion via a transformation of basis (Lagrange polynomials basis –>
orthonomial basis).

	Parameters

	
	samples (array) – SC code samples from which to compute the PCE coefficients

	qoi (string) – Name of the QoI.

	Returns

	pce_coefs – PCE coefficients per multi index l

	Return type

	dict

	
adapt_dimension(qoi, data_frame, store_stats_history=True, method='surplus', **kwargs)

	Compute the adaptation metric and decide which of the admissible
level indices to include in next iteration of the sparse grid. The
adaptation metric is based on the hierarchical surplus, defined as the
difference between the new code values of the admissible level indices,
and the SC surrogate of the previous iteration. Alternatively, it can be
based on the difference between the output mean of the current level,
and the mean computed with one extra admissible index.

This subroutine must be called AFTER the code is evaluated at
the new points, but BEFORE the analysis is performed.

	Parameters

	
	qoi (string) – the name of the quantity of interest which is used
to base the adaptation metric on.

	data_frame (pandas.DataFrame)

	store_stats_history (bool) – store the mean and variance at each refinement in self.mean_history
and self.std_history. Used for checking convergence in the statistics
over the refinement iterations

	method (string) – name of the refinement error, default is ‘surplus’. In this case the
error is based on the hierarchical surplus, which is an interpolation
based error. Another possibility is ‘var’,
in which case the error is based on the difference in the
variance between the current estimate and the estimate obtained
when a particular candidate direction is added.

	
adaptation_histogram()

	Plots a bar chart of the maximum order of the quadrature rule
that is used in each dimension. Use in case of the dimension adaptive
sampler to get an idea of which parameters were more refined than others.
This gives only a first-order idea, as it only plots the max quad
order independently per input parameter, so higher-order refinements
that were made do not show up in the bar chart.

	
adaptation_table(**kwargs)

	Plots a color-coded table of the quadrature-order refinement.
Shows in what order the parameters were refined, and unlike
adaptation_histogram, this also shows higher-order refinements.

	Parameters

	
	**kwargs (can contain kwarg ‘order’ to specify the order in which)

	the variables on the x axis are plotted (e.g. in order of decreasing

	1st order Sobol index).

	Returns

	

	Return type

	None.

	
analyse(data_frame=None, compute_moments=True, compute_Sobols=True)

	Perform SC analysis on input data_frame.

	Parameters

	data_frame (pandas.DataFrame) – Input data for analysis.

	Returns

	Results dictionary with sub-dicts with keys:
[‘statistical_moments’, ‘sobol_indices’].
Each dict has an entry for each item in qoi_cols.

	Return type

	dict

	
combination_technique(qoi, samples=None, **kwargs)

	Efficient quadrature formulation for (sparse) grids. See:

Gerstner, Griebel, “Numerical integration using sparse grids”
Uses the general combination technique (page 12).

	Parameters

	
	qoi (str) – name of the qoi

	samples (array) – compute the mean by setting samples = self.samples.
To compute the variance, set samples = (self.samples - mean)**2

	
compute_comb_coef(**kwargs)

	Compute general combination coefficients. These are the coefficients
multiplying the tensor products associated to each multi index l,
see page 12 Gerstner & Griebel, numerical integration using sparse grids

	
compute_marginal(qoi, u, u_prime, diff)

	Computes a marginal integral of the qoi(x) over the dimension defined
by u_prime, for every x value in dimensions u

	Parameters

	
	- qoi (str) (name of the quantity of interest)

	- u (array of int) (dimensions which are not integrated)

	- u_prime (array of int) (dimensions which are integrated)

	- diff (array of int) (levels)

	Returns

	- Values of the marginal integral

	——-

	
static compute_tensor_prod_u(xi, wi, u, u_prime)

	Calculate tensor products of weights and collocation points
with dimension of u and u’

	Parameters

	
	xi (array of floats) (1D colloction points)

	wi (array of floats) (1D quadrature weights)

	u (array of int) (dimensions)

	u_prime (array of int) (remaining dimensions (u union u’ = range(N)))

	Returns

	dict of tensor products of weight and points for dimensions u and u’

	——-

	
element_name()

	Name for this element for logging purposes

	
element_version()

	Version of this element for logging purposes

	
generalized_pce_coefs(l_norm, pce_coefs, comb_coef)

	Computes the generalized PCE coefficients, defined as the linear combibation
of PCE coefficients which make it possible to write the dimension-adaptive
PCE expansion in standard form. See DOI: 10.13140/RG.2.2.18085.58083/1

	Parameters

	
	l_norm (array) – array of quadrature order multi indices

	pce_coefs (tuple) – tuple of PCE coefficients computed by SC2PCE subroutine

	comb_coef (tuple) – tuple of combination coefficients computed by compute_comb_coef

	Returns

	gen_pce_coefs – The generalized PCE coefficients, indexed per multi index.

	Return type

	tuple

	
get_adaptation_errors()

	Returns self.adaptation_errors

	
get_moments(qoi)

	
	Parameters

	qoi (str) – name of the qoi

	Returns

	

	Return type

	mean and variance of qoi (float (N_qoi,))

	
get_pce_sobol_indices(qoi, typ='first_order', **kwargs)

	Computes Sobol indices using Polynomials Chaos coefficients. These
coefficients are computed from the SC expansion via a transformation
of basis (SC2PCE subroutine). This works better than computing the
Sobol indices directly from the SC expansion in the case of the
dimension-adaptive sampler. See DOI: 10.13140/RG.2.2.18085.58083/1

Method: J.D. Jakeman et al, “Adaptive multi-index collocation
for uncertainty quantification and sensitivity analysis”, 2019.
(Page 18)

	Parameters

	
	qoi (str) – name of the Quantity of Interest for which to compute the indices

	typ (str) – Default = ‘first_order’. ‘all’ is also possible

	**kwargs (dict) – if this contains ‘samples’, use these instead of the SC samples]
in the database

	Returns

	Mean: PCE mean
Var: PCE variance
S_u: PCE Sobol indices, either the first order indices or all indices

	Return type

	Tuple

	
get_pce_stats(l_norm, pce_coefs, comb_coef)

	Compute the mean and the variance based on the generalized PCE coefficients
See DOI: 10.13140/RG.2.2.18085.58083/1

	Parameters

	
	l_norm (array) – array of quadrature order multi indices

	pce_coefs (tuple) – tuple of PCE coefficients computed by SC2PCE subroutine

	comb_coef (tuple) – tuple of combination coefficients computed by compute_comb_coef

	Returns

	

	Return type

	tuple with mean and variance based on the PCE coefficients

	
get_sample_array(qoi)

	
	Parameters

	qoi (str) – name of quantity of interest

	Returns

	

	Return type

	array of all samples of qoi

	
get_sobol_indices(qoi, typ='first_order')

	Computes Sobol indices using Stochastic Collocation. Method:
Tang (2009), GLOBAL SENSITIVITY ANALYSIS FOR STOCHASTIC COLLOCATION
EXPANSION.

	Parameters

	
	qoi (str) (name of the Quantity of Interest for which to compute the indices)

	typ (str) (Default = ‘first_order’. ‘all’ is also possible)

	Returns

	

	Return type

	Either the first order or all Sobol indices of qoi

	
get_uncertainty_amplification(qoi)

	Computes a measure that signifies the ratio of output to input
uncertainty. It is computed as the (mean) Coefficient of Variation (V)
of the output divided by the (mean) CV of the input.

	Parameters

	qoi (string) (name of the Quantity of Interest)

	Returns

	blowup (float)

	Return type

	the ratio output CV / input CV

	
load_state(filename)

	Loads the complete state of the analysis object from a
pickle file, stored using save_state.

	Parameters

	filename (string) – name of the file to load

	
merge_accepted_and_admissible(level=0, **kwargs)

	In the case of the dimension-adaptive sampler, there are 2 sets of
quadrature multi indices. There are the accepted indices that are actually
used in the analysis, and the admissible indices, of which some might
move to the accepted set in subsequent iterations. This subroutine merges
the two sets of multi indices by moving all admissible to the set of
accepted indices.
Do this at the end, when no more refinements will be executed. The
samples related to the admissble indices are already computed, although
not used in the analysis. By executing this subroutine at very end, all
computed samples are used during the final postprocessing stage. Execute
campaign.apply_analysis to let the new set of indices take effect.
If further refinements are executed after all via sampler.look_ahead, the
number of new admissible samples to be computed can be very high,
especially in high dimensions. It is possible to undo the merge via
analysis.undo_merge before new refinements are made. Execute
campaign.apply_analysis again to let the old set of indices take effect.

	
plot_grid()

	Plots the collocation points for 2 and 3 dimensional problems

	
plot_stat_convergence()

	Plots the convergence of the statistical mean and std dev over the different
refinements in a dimension-adaptive setting. Specifically the inf norm
of the difference between the stats of iteration i and iteration i-1
is plotted.

	
quadrature(qoi, samples=None)

	Computes a (Smolyak) quadrature

	Parameters

	
	qoi (str) – name of the qoi

	samples (array) – compute the mean by setting samples = self.samples.
To compute the variance, set samples = (self.samples - mean)**2

	Returns

	

	Return type

	the quadrature of qoi

	
save_state(filename)

	Saves the complete state of the analysis object to a pickle file,
except the sampler object (self.samples).

	Parameters

	filename (string) – name to the file to write the state to

	
sc_expansion(samples, x)

	Non recursive implementation of the SC expansion. Performs interpolation
of code output samples for both full and sparse grids.

	Parameters

	
	samples (list) – list of code output samples.

	x (array) – One or more locations in stochastic space at which to evaluate
the surrogate.

	Returns

	surr – The interpolated values of the code output at input locations
specified by x.

	Return type

	array

	
surrogate(qoi, x, L=None)

	Use sc_expansion UQP as a surrogate

	Parameters

	
	qoi (str) – name of the qoi

	x (array) – location at which to evaluate the surrogate

	L (int) – level of the (sparse) grid, default = self.L

	Returns

	

	Return type

	the interpolated value of qoi at x (float, (N_qoi,))

	
undo_merge()

	This reverses the effect of the merge_accepted_and_admissble subroutine.
Execute if further refinement are required after all.

	
class easyvvuq.analysis.sc_analysis.SCAnalysisResults(raw_data=None, samples=None, qois=None, inputs=None)

	Bases: easyvvuq.analysis.results.AnalysisResults

	
supported_stats()

	Types of statistics supported by the describe method.

	Returns

	

	Return type

	list of str

	
surrogate()

	Return an SC surrogate model.

	Returns

	
	A function that takes a dictionary of parameter - value pairs and returns

	a dictionary with the results (same output as decoder).

	
easyvvuq.analysis.sc_analysis.lagrange_poly(x, x_i, j)

	Lagrange polynomials used for interpolation

	l_j(x) = product(x - x_m / x_j - x_m) with 0 <= m <= k

	and m !=j

	Parameters

	
	x (float) – location at which to compute the polynomial

	x_i (list or array of float) – nodes of the Lagrange polynomials

	j (int) – index of node at which l_j(x_j) = 1

	Returns

	l_j(x) calculated as shown above.

	Return type

	float

	
easyvvuq.analysis.sc_analysis.powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)

	Taken from: https://docs.python.org/3/library/itertools.html#recipes

	Parameters

	iterable (iterable) – Input sequence

	
easyvvuq.analysis.sc_analysis.setdiff2d(X, Y)

	Computes the difference of two 2D arrays X and Y

	Parameters

	
	X (2D numpy array)

	Y (2D numpy array)

	Returns

	

	Return type

	The difference X Y as a 2D array

easyvvuq.analysis.ssc_analysis module

ANALYSIS CLASS FOR THE SSC SAMPLER

	
class easyvvuq.analysis.ssc_analysis.SSCAnalysis(sampler=None, qoi_cols=None)

	Bases: easyvvuq.analysis.base.BaseAnalysisElement

SSc analysis class.

	
adapt_locally(n_new_samples=1)

	Locally refine the sampling plan based on the SSC geometric
refinement measure.

	Parameters

	n_new_samples (int, optional) – The number of new code evaulations to perform. The default is 1.

	Returns

	
	None. Updates the Delaunay triangulation of the SSC sampler with

	the new points. A new ensemble must be executed next.

	
analyse(data_frame=None, compute_moments=True, n_mc=20000)

	Perform SSC analysis on input data_frame.

	Parameters

	
	data_frame (pandas.DataFrame) – Input data for analysis.

	compute_moments (bool, optional.) – Compute the first 2 moments. Default is True.

	Returns

	results – A dictionary containing the statistical moments.

	Return type

	dict

	
element_name()

	Name for this element for logging purposes

	
element_version()

	Version of this element for logging purposes

	
get_moments(qoi, n_mc)

	Compute the mean and variance through Monte Carlo sampling of the SSC
surrogate. Independent random inputs samples are drawn though the
SSC sampler object.

	Parameters

	
	qoi (string) – The name of the QoI.

	n_mc (int) – The number of Monte Carlo samples.

	Returns

	
	mean (array) – The mean of qoi.

	var (array) – The variance of qoi.

	
get_sample_array(qoi)

	
	Parameters

	qoi (str) – name of quantity of interest

	Returns

	

	Return type

	array of all samples of qoi

	
load_samples(data_frame)

	Extract output values for each quantity of interest from Dataframe.

	Parameters

	data_frame (EasyVVUQ (pandas) data frame) – The code samples from the EasyVVUQ data frame.

	Returns

	

	Return type

	None.

	
load_state(filename)

	Loads the complete state of the analysis object from a
pickle file, stored using save_state.

	Parameters

	filename (string) – name of the file to load

	
plot_grid()

	Plot the 1D or 2D sampling plan and color code the simplices according
to their polynomial order.

	Returns

	

	Return type

	None.

	
save_state(filename)

	Saves the complete state of the analysis object to a pickle file,
except the sampler object (self.sampler).

	Parameters

	filename (string) – name to the file to write the state to

	
surrogate(qoi, xi)

	Evaluate the SSC surrogate at xi.

	Parameters

	
	qoi (string) – Name of the QoI.

	xi (array, shape (n_xi,)) – The location in the input space at which to evaluate the
surrogate.

	Returns

	The surrogate output at xi

	Return type

	array

	
update_surrogate(qoi, data_frame, max_LEC_jobs=4, n_mc_LEC=5, max_ENO_jobs=4)

	Update the SSC surrogate given new data. Given an EasyVVUQ dataframe,
check the LEC condition, and compute the ENO interpolation stencils.

	Parameters

	
	qoi (string) – The name of the QoI on the basis of which the sampling plan
is refined.

	data_frame (EasyVVUQ (pandas) data frame) – The code samples from the EasyVVUQ data frame.

	max_LEC_jobs (int, optional) – The number of LEC checks to perform in parallel. The default is 4.

	n_mc_LEC (int, optional) – The number of surrogate evaluations used in the LEC check.
The default is 5.

	max_LEC_jobs (int, optional) – The number of ENO stencils to compute in parallel. The default is 4.

	Returns

	
	None. Stores the polynomials orders, interpolation stencils and

	the simplex probabilities in analysis.p_j, analysis.S_j and

	analysis.prob_j respectively.

	
class easyvvuq.analysis.ssc_analysis.SSCAnalysisResults(raw_data=None, samples=None, qois=None, inputs=None)

	Bases: easyvvuq.analysis.results.AnalysisResults

	
supported_stats()

	Types of statistics supported by the describe method.

	Returns

	

	Return type

	list of str

	
surrogate()

	Return a SSC surrogate model.

	Returns

	
	A function that takes a dictionary of parameter - value pairs and returns

	a dictionary with the results (same output as decoder).

Module contents

easyvvuq.comparison package

Submodules

easyvvuq.comparison.base module

Provides base class for all comparison/validation elements.

	
class easyvvuq.comparison.base.BaseComparisonElement

	Bases: easyvvuq.base_element.BaseElement

Baseclass for all EasyVVUQ comparison elements.

	
compare(dataframe1, dataframe2)

	

	
element_category()

	

easyvvuq.comparison.validate module

Validation by comparing QoI distributions.

	
class easyvvuq.comparison.validate.ValidateSimilarity

	Bases: easyvvuq.comparison.base.BaseComparisonElement

	
compare(dataframe1, dataframe2)

	Perform comparison between two lists or arrays
of discrete distributions.

	Parameters

	
	dataframe1 (NumPy array or list)

	dataframe2 (NumPy array or list)

	Returns

	
	A list of distances between two lists of discrete distributions,

	dataframe1 and dataframe2.

	
dist(p, q)

	

	
class easyvvuq.comparison.validate.ValidateSimilarityHellinger

	Bases: easyvvuq.comparison.validate.ValidateSimilarity

	
dist(p, q)

	Compute Hellinger distance between two discrete probability
distributions (PDF). The Hellinger distance metric gives an
output in the range [0,1] with values closer to 0 meaning the
PDFs are more similar.

	Parameters

	
	p (NumPy array)

	q (NumPy array)

	Returns

	
	Hellinger distance between distributions p and q.

	https (//en.wikipedia.org/wiki/Hellinger_distance)

	
element_name()

	

	
element_version()

	

	
class easyvvuq.comparison.validate.ValidateSimilarityJensenShannon

	Bases: easyvvuq.comparison.validate.ValidateSimilarity

	
dist(p, q)

	Compute Jensen-Shannon distance between two discrete
probability distributions (PDF). It is based on Kullback–Leibler
divergence and gives an output metric un the range [0,1] with
values closer to 0 meaning the PDFs are more similar.

	Parameters

	
	p (NumPy array)

	q (NumPy array)

	Returns

	
	Jensen-Shannon divergence between distributions p and q.

	https (//en.wikipedia.org/wiki/Jensen%E2%80%93Shannon_divergence)

	https (//en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence)

	
element_name()

	

	
element_version()

	

	
class easyvvuq.comparison.validate.ValidateSimilarityWasserstein

	Bases: easyvvuq.comparison.validate.ValidateSimilarity

	
dist(p, q)

	Compute Wasserstein distance between two discrete cumulative
distributions (CDF). The Wasserstein distance has an
unrestricted range with a lower limit of 0. A smaller distance
indicates a stronger similarity between between CFDs.

	Parameters

	
	p (NumPy array)

	q (NumPy array)

	Returns

	
	Wasserstein distance between distributions p and q.

	https (//en.wikipedia.org/wiki/Wasserstein_metric)

	
element_name()

	

	
element_version()

	

Module contents

easyvvuq.db package

Submodules

easyvvuq.db.base module

Provides a base class for CampaignDBs

	
class easyvvuq.db.base.BaseCampaignDB(location=None, new_campaign=False, name=None, info=None)

	Bases: object

Baseclass for all EasyVVUQ CampaignDBs

Skeleton for class that provides database access for the campaign.

	Parameters

	
	location (str or None) – Location to look for database.

	new_campaign (bool) – Does the database need to be initialised as a new campaign.

	name (str or None) – Name of the campaign.

	info (easyvvuq.data_structs.CampaignInfo) – Information defining the campaign.

	
add_app(app_info)

	Add application to the ‘app’ table.

	Parameters

	app_info (AppInfo) – Application definition.

	
add_run(run_info=None, prefix='Run_')

	Add run to the runs table in the database.

	Parameters

	
	run_info (easyvvuq.data_structs.RunInfo) – Contains relevant run fields: params, status (where in the
EasyVVUQ workflow is this RunTable), campaign (id number),
sample, app

	prefix (str) – Prefix for run id

	
add_sampler(sampler)

	Add new Sampler to the ‘sampler’ table.

	Parameters

	sampler (BaseSamplingElement)

	
app(name)

	Get app information. Specific applications selected by name,
otherwise first entry in database ‘app’ selected.

	Parameters

	name (str or None) – Name of selected app, if None given then first app will be
selected.

	Returns

	Application information.

	Return type

	dict

	
append_collation_dataframe(df, app_id)

	Append the data in dataframe ‘df’ to that already collated in the database

	Parameters

	
	df (pandas dataframe) – The dataframe whose contents need to be appended to the collation store

	app_id (int) – The id of this app in the sql database. Used to determine which collation
table is appended to.

	
campaign_dir(campaign_name=None)

	Get campaign directory for campaign_name.

	Returns

	Path to campaign directory.

	Return type

	str

	
campaigns()

	Get list of campaigns for which information is stored in the
database.

	Returns

	Campaign names.

	Return type

	list

	
get_campaign_id(name)

	Return the (database) id corresponding to the campaign with name ‘name’.

	Parameters

	name (str) – Name of the campaign.

	Returns

	The id of the campaign with the specified name

	Return type

	int

	
get_collation_dataframe(app_id)

	Returns a dataframe containing the full collated results stored in this database
i.e. the total of what was added with the append_collation_dataframe() method.

	Parameters

	app_id (int) – The id of this app in the sql database. Used to determine which collation
table is returned.

	Returns

	df – The dataframe with all contents that were appended to the table corresponding
to this app_id.

	Return type

	pandas dataframe

	
get_num_runs(campaign=None, sampler=None, status=None, not_status=None)

	Returns the number of runs matching the filtering criteria.

	Parameters

	
	campaign (int or None) – Campaign id to filter for.

	sampler (int or None) – Sampler id to filter for.

	status (enum(Status) or None) – Status string to filter for.

	not_status (enum(Status) or None) – Exclude runs with this status string

	Returns

	The number of runs in the database matching the filtering criteria

	Return type

	int

	
get_run_status(run_name, campaign=None, sampler=None)

	Return the status (enum) for the run with name ‘run_name’ (and, optionally,
filtering for campaign and sampler by id)

	Parameters

	
	run_name (str) – Name of the run

	campaign (int) – ID of the desired Campaign

	sampler (int) – ID of the desired Sampler

	Returns

	status – Status of the run.

	Return type

	enum(Status)

	
resurrect_app(app_name)

	Return the ‘live’ encoder and decoder objects corresponding to the app with
name ‘app_name’ in the database. They are deserialized from the states
previously stored in the database.

	Parameters

	app_name (string) – Name of the app to resurrect

	Returns

	The ‘live’ encoder and decoder objects associated with this app

	Return type

	BaseEncoder, BaseDecoder, BaseCollationElement

	
resurrect_sampler(sampler_id)

	Return the sampler object corresponding to id sampler_id in the database.
It is deserialized from the state stored in the database.

	Parameters

	sampler_id (int) – The id of the sampler to resurrect

	Returns

	The ‘live’ sampler object, deserialized from the state in the db

	Return type

	BaseSamplingElement

	
run(run_name, campaign=None, sampler=None)

	Get the information for a specified run.

	Parameters

	
	run_name (str) – Name of run to filter for.

	campaign (int or None) – Campaign id to filter for.

	sampler (int or None) – Sample id to filter for.

	Returns

	Containing run information (run_name, params, status, sample,
campaign, app)

	Return type

	dict

	
runs(campaign=None, sampler=None, status=None, not_status=None)

	A generator to return all run information for selected campaign and sampler.

	Parameters

	
	campaign (int or None) – Campaign id to filter for.

	sampler (int or None) – Sampler id to filter for.

	status (enum(Status) or None) – Status string to filter for.

	not_status (enum(Status) or None) – Exclude runs with this status string

	Returns

	Information on each selected run (key = run_name, value = dict of
run information fields.), one at a time.

	Return type

	dict

	
runs_dir(campaign_name=None)

	Get the directory used to store run information for campaign_name.

	Parameters

	campaign_name (str) – Name of the selected campaign.

	Returns

	Path containing run outputs.

	Return type

	str

	
set_dir_for_run(run_name, run_dir, campaign=None, sampler=None)

	Set the ‘run_dir’ path for the specified run in the database.

	Parameters

	
	run_name (str) – Name of run to filter for.

	run_dir (str) – Directory path associated to set for this run.

	campaign (int or None) – Campaign id to filter for.

	sampler (int or None) – Sample id to filter for.

	
set_run_statuses(run_name_list, status)

	Set the specified ‘status’ (enum) for all runs in the list run_ID_list

	Parameters

	
	run_name_list (list of str) – A list of run names run names (format is usually: prefix + int)

	status (enum(Status)) – The new status all listed runs should now have

	
update_sampler(sampler_id, sampler_element)

	Update the state of the Sampler with id ‘sampler_id’ to
that in the passed ‘sampler_element’

	Parameters

	
	sampler_id (int) – The id of the sampler in the db to update

	sampler_element (BaseSamplingElement) – The sampler whose state should be used as the new state

easyvvuq.db.sql module

Provides class that allows access to an SQL Database that serves as the back-end to EasyVVUQ.

	
class easyvvuq.db.sql.AppTable(**kwargs)

	Bases: sqlalchemy.orm.decl_api.Base

An SQLAlchemy schema for the app table.

	
actions

	

	
id

	

	
name

	

	
params

	

	
class easyvvuq.db.sql.CampaignDB(location=None)

	Bases: easyvvuq.db.base.BaseCampaignDB

An interface between the campaign database and the campaign.

	Parameters

	location (str) – database URI as needed by SQLAlchemy

	
add_app(app_info)

	Add application to the ‘app’ table.

	Parameters

	app_info (AppInfo) – Application definition.

	
add_runs(run_info_list=None, run_prefix='run_', iteration=0)

	Add list of runs to the runs table in the database.

	Parameters

	
	run_info_list (List of RunInfo objects) – Each RunInfo object contains relevant run fields: params, status (where in the
EasyVVUQ workflow is this RunTable), campaign (id number), sample, app

	run_prefix (str) – Prefix for run name

	iteration (int) – Iteration number used by iterative workflows. For example, MCMC. Can be left
as default zero in other cases.

	
add_sampler(sampler_element)

	Add new Sampler to the ‘sampler’ table.

	Parameters

	sampler_element (Sampler) – An EasyVVUQ sampler.

	Returns

	The sampler id in the database.

	Return type

	int

	
app(name=None)

	Get app information. Specific applications selected by name,
otherwise first entry in database ‘app’ selected.

	Parameters

	name (str or None) – Name of selected app, if None given then first app will be
selected.

	Returns

	Information about the application.

	Return type

	dict

	
campaign_dir(campaign_name=None)

	Get campaign directory for campaign_name.

	Parameters

	campaign_name (str) – Name of campaign to select

	Returns

	Path to campaign directory.

	Return type

	str

	
campaign_exists(name)

	Check if campaign specified by that name already exists.

	Parameters

	name (str)

	Returns

	True if such a campaign already exists, False otherwise

	Return type

	bool

	
campaigns()

	Get list of campaigns for which information is stored in the
database.

	Returns

	Campaign names.

	Return type

	list

	
create_campaign(info)

	Creates a new campaign in the database.

	Parameters

	info (CampaignInfo) – This easyvvuq.data_structs.CampaignInfo will contain information
needed to construct the Campaign table.

	
dump()

	Dump the database as JSON for debugging purposes.

	Returns

	A database dump in JSON format.

	Return type

	dict

	
get_active_app()

	Returns active app table.

	Returns

	

	Return type

	AppTable

	
get_campaign_id(name)

	Return the (database) id corresponding to the campaign with name ‘name’.

	Parameters

	name (str) – Name of the campaign.

	Returns

	The id of the campaign with the specified name

	Return type

	int

	
get_num_runs(campaign=None, sampler=None, status=None, not_status=None)

	Returns the number of runs matching the filtering criteria.

	Parameters

	
	campaign (int or None) – Campaign id to filter for.

	sampler (int or None) – Sampler id to filter for.

	status (enum(Status) or None) – Status string to filter for.

	not_status (enum(Status) or None) – Exclude runs with this status string

	Returns

	The number of runs in the database matching the filtering criteria

	Return type

	int

	
get_results(app_name, sampler_id, status=<Status.COLLATED: 3>, iteration=-1)

	Returns the results as a pandas DataFrame.

	Parameters

	
	app_name (str) – Name of the app to return data for.

	sampler_id (int) – ID of the sampler.

	status (STATUS) – Run status to filter for.

	iteration (int) – If a positive integer will return the results for a given iteration only.

	Returns

	Will construct a DataFrame from the decoder output dictionaries.

	Return type

	DataFrame

	
get_run_status(run_id, campaign=None, sampler=None)

	Return the status (enum) for the run with name ‘run_name’ (and, optionally,
filtering for campaign and sampler by id)

	Parameters

	
	run_id (int) – id of the run

	campaign (int) – ID of the desired Campaign

	sampler (int) – ID of the desired Sampler

	Returns

	Status of the run.

	Return type

	enum(Status)

	
get_sampler_id(campaign_id)

	Return the (database) id corresponding to the sampler currently set
for the campaign with id ‘campaign_id’

	Parameters

	campaign_id (int) – ID of the campaign.

	Returns

	The id of the sampler set for the specified campaign

	Return type

	int

	
relocate(new_path, campaign_name)

	Update all runs in the db with the new campaign path.

	Parameters

	
	new_path (str) – new runs directory

	campaign_name (str) – name of the campaign

	
replace_actions(app_name, actions)

	Replace actions for an app with a given name.

	Parameters

	
	app_name (str) – Name of the app.

	actions (Actions) – Actions instance, will replace the current Actions of an app.

	
resume_campaign(name)

	Resumes campaign.

	Parameters

	name (str) – Name of the Campaign to resume. Must already exist in the database.

	
resurrect_app(app_name)

	Return the ‘live’ encoder, decoder and collation objects corresponding to the app with
name ‘app_name’ in the database. They are deserialized from the states previously
stored in the database.

	Parameters

	app_name (string) – Name of the app to resurrect

	Returns

	The ‘live’ Actions object associated with this app. Used to execute the simulation
associated with the app as well as do any pre- and post-processing.

	Return type

	Actions

	
resurrect_sampler(sampler_id)

	Return the sampler object corresponding to id sampler_id in the database.
It is deserialized from the state stored in the database.

	Parameters

	sampler_id (int) – The id of the sampler to resurrect

	Returns

	The ‘live’ sampler object, deserialized from the state in the db

	Return type

	Sampler

	
run(name, campaign=None, sampler=None, status=None, not_status=None, app_id=None)

	Get the information for a specified run.

	Parameters

	
	name (str) – Name of run to filter for.

	campaign (int or None) – Campaign id to filter for.

	sampler (int or None) – Sampler id to filter for.

	status (enum(Status) or None) – Status string to filter for.

	not_status (enum(Status) or None) – Exclude runs with this status string

	app_id (int or None) – App id to filter for.

	Returns

	Containing run information (run_name, params, status, sample,
campaign, app)

	Return type

	dict

	
run_ids(campaign=None, sampler=None, status=None, not_status=None, app_id=None)

	A generator to return all run IDs for selected campaign and sampler.

	Parameters

	
	campaign (int or None) – Campaign id to filter for.

	sampler (int or None) – Sampler id to filter for.

	status (enum(Status) or None) – Status string to filter for.

	not_status (enum(Status) or None) – Exclude runs with this status string

	app_id (int or None) – App id to filter for.

	Yields

	str – run ID for each selected run, one at a time.

	
runs(campaign=None, sampler=None, status=None, not_status=None, app_id=None)

	A generator to return all run information for selected campaign and sampler.

	Parameters

	
	campaign (int or None) – Campaign id to filter for.

	sampler (int or None) – Sampler id to filter for.

	status (enum(Status) or None) – Status string to filter for.

	not_status (enum(Status) or None) – Exclude runs with this status string

	app_id (int or None) – App id to filter for.

	Yields

	dict – Information on each selected run (key = run_name, value = dict of
run information fields.), one at a time.

	
runs_dir(campaign_name=None)

	Get the directory used to store run information for campaign_name.

	Parameters

	campaign_name (str) – Name of the selected campaign.

	Returns

	Path containing run outputs.

	Return type

	str

	
set_active_app(name)

	Set an app specified by name as active.

	Parameters

	name (str) – name of the app to set as active

	
set_dir_for_run(run_name, run_dir, campaign=None, sampler=None)

	Set the ‘run_dir’ path for the specified run in the database.

	Parameters

	
	run_name (str) – Name of run to filter for.

	run_dir (str) – Directory path associated to set for this run.

	campaign (int or None) – Campaign id to filter for.

	sampler (int or None) – Sample id to filter for.

	
set_run_statuses(run_id_list, status)

	Set the specified ‘status’ (enum) for all runs in the list run_id_list

	Parameters

	
	run_id_list (list of int) – a list of run ids

	status (enum(Status)) – The new status all listed runs should now have

	
set_sampler(campaign_id, sampler_id)

	Set specified campaign to be using specified sampler

	Parameters

	
	campaign_id (int) – ID of the campaign.

	sampler_id (int) – ID of the sampler.

	
store_result(run_id, result, change_status=True)

	Stores results of a simulation inside the RunTable given a run id.

	Parameters

	
	run_id (int) – The id of a run to store the results in. This will be the run with which these
results are associated with. Namely the run that has the inputs used to generate
these results.

	result (dict) – Results in dictionary form. This is the same format as used by the Decoder.

	change_status (bool) – If set to False will not update the runs’ status to COLLATED. This is sometimes
useful in scenarios where you want several apps to work on the same runs.

	
store_results(app_name, results)

	Stores the results from a given run in the database.

	Parameters

	
	run_name (str) – name of the run

	results (dict) – dictionary with the results (from the decoder)

	
update_sampler(sampler_id, sampler_element)

	Update the state of the Sampler with id ‘sampler_id’ to
that in the passed ‘sampler_element’

	Parameters

	
	sampler_id (int) – The id of the sampler in the db to update

	sampler_element (Sampler) – The sampler that should be used as the new state

	
class easyvvuq.db.sql.CampaignTable(**kwargs)

	Bases: sqlalchemy.orm.decl_api.Base

An SQLAlchemy schema for the campaign information table.

	
active_app

	

	
campaign_dir

	

	
campaign_dir_prefix

	

	
easyvvuq_version

	

	
id

	

	
name

	

	
runs_dir

	

	
sampler

	

	
class easyvvuq.db.sql.DBInfoTable(**kwargs)

	Bases: sqlalchemy.orm.decl_api.Base

An SQLAlchemy schema for the database information table.

	
id

	

	
next_run

	

	
class easyvvuq.db.sql.RunTable(**kwargs)

	Bases: sqlalchemy.orm.decl_api.Base

An SQLAlchemy schema for the run table.

	
app

	

	
campaign

	

	
execution_info

	

	
id

	

	
iteration

	

	
params

	

	
result

	

	
run_dir

	

	
run_name

	

	
sampler

	

	
status

	

	
class easyvvuq.db.sql.SamplerTable(**kwargs)

	Bases: sqlalchemy.orm.decl_api.Base

An SQLAlchemy schema for the run table.

	
id

	

	
sampler

	

	
easyvvuq.db.sql.set_sqlite_pragma(dbapi_connection, connection_record)

	

Module contents

easyvvuq.decoders package

Submodules

easyvvuq.decoders.hdf5 module

A Decoder for HDF5 format files.

	
class easyvvuq.decoders.hdf5.HDF5(target_filename, output_columns)

	Bases: object

HDF5 Decoder.

	Parameters

	
	target_filename (str) – Filename of an HDF5 file to decode.

	ouput_columns (list) – A list of column names that will be selected to appear in the output.

	
parse_sim_output(run_info={})

	Parses the HDF5 file and converts it to the EasyVVUQ internal dictionary based
format. The file is parsed in such a way that each column will appear as a vector
QoI in the output dictionary.

For example if the file contains the following data
a,b
1,2
3,4

And both a and b are specified as output_columns the output will look as follows
{‘a’: [1, 3], ‘b’: [2, 4]}.

	Parameters

	run_info (dict) – Information about the run (used to retrieve construct the absolute path
to the CSV file that needs decoding.

easyvvuq.decoders.json module

A basic JSON format decoder.

Will read a JSON file and will output select values. Values have to be either
numeric or lists. In case of lists it will treat those as vector-valued quantities
of interest.

	
class easyvvuq.decoders.json.JSONDecoder(target_filename, output_columns)

	Bases: object

	
parse_sim_output(run_info={})

	

easyvvuq.decoders.simple_csv module

A Decoder for CSV format files.

	
class easyvvuq.decoders.simple_csv.SimpleCSV(target_filename, output_columns, dialect='excel')

	Bases: object

CSV Decoder.

	Parameters

	
	target_filename (str) – Filename of a CSV file to decode.

	ouput_columns (list) – A list of column names that will be selected to appear in the output.

	
parse_sim_output(run_info={})

	Parses the CSV file and converts it to the EasyVVUQ internal dictionary based
format. The file is parsed in such a way that each column will appear as a vector
QoI in the output dictionary.

For example if the file contains the following data
a,b
1,2
3,4

And both a and b are specified as output_columns the output will look as follows
{‘a’: [1, 3], ‘b’: [2, 4]}.

	Parameters

	run_info (dict) – Information about the run (used to retrieve construct the absolute path
to the CSV file that needs decoding.

easyvvuq.decoders.yaml module

A Decoder that can be used to get information from a YAML file.
Works identically to the JSON decoder. Look at the documentation of that
class for more information

	
class easyvvuq.decoders.yaml.YAMLDecoder(target_filename, output_columns)

	Bases: easyvvuq.decoders.json.JSONDecoder

Module contents

easyvvuq.encoders package

Submodules

easyvvuq.encoders.copy_encoder module

An encoder meant to simply copy a file to the input directory unchanged.
It is meant to be used in combination with MultiBuilder encoder and possibly
the DirectoryBuilder. It duplicates some functionality of the ApplyFixtures
encoder but can be useful for very simple cases.

Examples

>>> multiencoder = uq.encoders.MultiEncoder(
 DirectoryBuilder(tree={"parent" : {"child1" : None, "child2" : None}}),
 CopyEncoder('/home/user/input1.conf', 'parent/child1/input1.conf')
 CopyEncoder('/home/user/input2.conf', 'parent/child1/input2.conf')
 CopyEncoder('/home/user/input3.conf', 'parent/child2/input3.conf')
 GenericEncoder(delimiter='$', template_fname='/home/user/template.in',
 target_filename='parent/input.int'))

	
class easyvvuq.encoders.copy_encoder.CopyEncoder(source_filename, target_filename)

	Bases: object

An Encoder to copy an input file to a simulation.

	Parameters

	
	source_filename (str) – a full path to some file that a simulation needs

	target_filename (str) – a target filename inside the simulation directory

	
element_version()

	

	
encode(params={}, target_dir='')

	Copy a file to target_dir.

	Parameters

	
	params (dict) – keep empty, has no effect

	target_dir (str) – target directory, full path

	
get_restart_dict()

	

easyvvuq.encoders.directory_builder module

	
class easyvvuq.encoders.directory_builder.DirectoryBuilder(tree)

	Bases: object

DirectoryBuilder builds the specified directory structure for a Run.

The dir structure is specified by the ‘tree’ parameter. This should be a dict of dicts,
for example:

tree = {‘a’ : {‘b’ : {‘c’ : None, ‘d’ : None}}, ‘e’ : {‘f’ : None}}

	Parameters

	tree (dict of dicts) – The desired directory structure

	
create_dir_tree(dirtree, root)

	

	
element_version()

	

	
encode(params={}, target_dir='')

	Builds the directory structure specified in self.tree into the target_dir directory

	Parameters

	
	params (dict) – Parameter information in dictionary.

	target_dir (str) – Path to directory where application input will be written.

	
get_restart_dict()

	

easyvvuq.encoders.generic_template module

	
class easyvvuq.encoders.generic_template.GenericEncoder(template_fname, delimiter='$', target_filename='app_input.txt')

	Bases: object

GenericEncoder for substituting values into application template input.

	
encode(params={}, target_dir='')

	Substitutes params into a template application input, saves in
target_dir

	Parameters

	
	params (dict) – Parameter information in dictionary.

	target_dir (str) – Path to directory where application input will be written.

	
easyvvuq.encoders.generic_template.get_custom_template(template_txt, custom_delimiter='$')

	

easyvvuq.encoders.jinja_encoder module

	
class easyvvuq.encoders.jinja_encoder.JinjaEncoder(template_fname, target_filename='app_input.txt')

	Bases: object

JinjaEncoder for substituting values into application template input.
Uses the jinja2 template system, which supports more complex expressions than
the GenericEncoder.
See https://jinja.palletsprojects.com/en/2.10.x/templates/ for template syntax.

	
encode(params={}, target_dir='')

	Substitutes params into a template application input, saves in
target_dir

	Parameters

	
	params (dict) – Parameter information in dictionary.

	target_dir (str) – Path to directory where application input will be written.

easyvvuq.encoders.multiencoder module

	
class easyvvuq.encoders.multiencoder.MultiEncoder(*encoders)

	Bases: object

	
encode(params={}, target_dir='')

	Applies all encoders in the list of encoders.

	
is_restartable()

	

Module contents

easyvvuq.sampling package

Submodules

easyvvuq.sampling.base module

	
class easyvvuq.sampling.base.BaseSamplingElement

	Bases: easyvvuq.base_element.BaseElement

Baseclass for all EasyVVUQ sampling elements.

	Variables

	sampler_name (str) – Name of the particular sampler.

	
analysis_class

	

	
element_category()

	

	
element_name()

	

	
is_finite()

	

	
iteration = 0

	

	
n_samples()

	

	
sampler_id

	

	
class easyvvuq.sampling.base.Vary(vary_dict)

	Bases: object

	
get_items()

	

	
get_keys()

	

	
get_values()

	

easyvvuq.sampling.csv_sampler module

A CSV file based sampler.

Useful for cases where you want to evaluate a sampling plan generated by other software.
Will take a CSV file with an appropriate header and will output it row by row.

	
class easyvvuq.sampling.csv_sampler.CSVSampler(filename, counter=0)

	Bases: easyvvuq.sampling.base.BaseSamplingElement

	
is_finite()

	

	
n_samples()

	Returns the number of samples in this sampler.
:returns:
:rtype: if the user specifies maximum number of samples than return that, otherwise - error

	
sampler_name = 'csv_sampler'

	

easyvvuq.sampling.dataframe_sampler module

	
class easyvvuq.sampling.dataframe_sampler.DataFrameSampler(df, counter=0)

	Bases: easyvvuq.sampling.base.BaseSamplingElement

	
is_finite()

	

	
n_samples()

	Returns the number of samples in this sampler.
:returns:
:rtype: if the user specifies maximum number of samples than return that, otherwise - error

	
sampler_name = 'csv_sampler'

	

easyvvuq.sampling.empty module

	
class easyvvuq.sampling.empty.EmptySampler

	Bases: easyvvuq.sampling.base.BaseSamplingElement

	
is_finite()

	

	
sampler_name = 'empty'

	

easyvvuq.sampling.grid_sampler module

A grid sampler

Useful for e.g. hyperparameter search. The “vary” dict contains the values
that must be considered per (hyper)parameter, for instance:

	vary = {“x1”: [0.0, 0.5, 0.1],

	“x2 = [1, 3],
“x3” = [True, False]}

The sampler will create a tensor grid using all specified 1D parameter
values.

	
class easyvvuq.sampling.grid_sampler.Grid_Sampler(vary, count=0)

	Bases: easyvvuq.sampling.base.BaseSamplingElement

	
get_param_names()

	Get the names of all parameters that were varied.

	Returns

	param_names – List of parameter names.

	Return type

	list

	
is_finite()

	

	
n_samples()

	Returns the number of samples in this sampler.

	
sampler_name = 'grid_sampler'

	

easyvvuq.sampling.mc_sampler module

	
class easyvvuq.sampling.mc_sampler.MCSampler(vary, n_mc_samples, **kwargs)

	Bases: easyvvuq.sampling.random.RandomSampler

This is a Monte Carlo sampler, used to compute the Sobol indices, mean
and variance of the different QoIs.

	
analysis_class

	Return a corresponding analysis class.

	
saltelli(n_mc)

	Generates a Saltelli sampling plan of n_mc*(n_params + 2) input samples
needed to compute the Sobol indices. Stored in xi_mc.

Method: A. Saltelli, Making best use of model evaluations to compute
sensitivity indices, Computer Physics Communications, 2002.

	Parameters

	
	n_mc (the number of Monte Carlo samples per input matrix. The total)

	number of samples is n_mc*(n_params + 2)

	Returns

	

	Return type

	None.

	
sampler_name = 'mc_sampler'

	

easyvvuq.sampling.mcmc module

	
class easyvvuq.sampling.mcmc.MCMCSampler(init, q, qoi, n_chains=1, likelihood=<function MCMCSampler.<lambda>>, estimator=None)

	Bases: easyvvuq.sampling.base.BaseSamplingElement

A Metropolis-Hastings MCMC Sampler.

	Parameters

	
	init (dict) – Initial values for each input parameter. Of the form {‘input1’: value, …}

	q (function) – A function of one argument X (dictionary) that returns the proposal distribution conditional on
the X.

	qoi (str) – Name of the quantity of interest

	n_chains (int) – Number of MCMC chains to run in paralle.

	estimator (function) – To be used with replica_col argument. Outputs an estimate of some
parameter when given a sample array.

	
analysis_class

	Returns a corresponding analysis class for this sampler.

	Returns

	

	Return type

	class

	
is_finite()

	

	
n_samples()

	

	
sampler_name = 'mcmc_sampler'

	

	
update(result, invalid)

	Performs the MCMC sampling procedure on the campaign.

	Parameters

	
	result (pandas DataFrame) – run information from previous iteration (same as collation DataFrame)

	invalid (pandas DataFrame) – invalid run information (runs that cannot be executed for some reason)

	Returns

	

	Return type

	list of rejected run ids

easyvvuq.sampling.pce module

	
class easyvvuq.sampling.pce.PCESampler(vary=None, count=0, polynomial_order=4, regression=False, rule='G', sparse=False, growth=False)

	Bases: easyvvuq.sampling.base.BaseSamplingElement

	
analysis_class

	Return a corresponding analysis class.

	
is_finite()

	

	
n_samples

	Number of samples (Ns) of PCE method.
- When using pseudo-spectral projection method with tensored

quadrature: Ns = (p + 1)**d

	When using pseudo-spectral projection method with sparce grid
quadratue: Ns = bigO((p + 1)*log(p + 1)**(d-1))

	When using regression method: Ns = 2*(p + d)!/p!*d!

Where: p is the polynomial degree and d is the number of
uncertain parameters.

Ref: Eck et al. ‘A guide to uncertainty quantification and
sensitivity analysis for cardiovascular applications’ [2016].

	
sampler_name = 'PCE_sampler'

	

easyvvuq.sampling.qmc module

This sampler is meant to be used with the QMC Analysis module.

	
class easyvvuq.sampling.qmc.QMCSampler(vary, n_mc_samples, count=0)

	Bases: easyvvuq.sampling.base.BaseSamplingElement

	
analysis_class

	Return a corresponding analysis class.

	
is_finite()

	Can this sampler produce only a finite number of samples.

	
n_samples

	Returns the number of samples in this sampler.

	Returns

	
	This computed with the formula (d + 2) * N, where d is the number

	of uncertain parameters and N is the (estimated) number of samples

	for the Monte Carlo method.

	
sampler_name = 'QMC_sampler'

	

easyvvuq.sampling.quasirandom module

Summary

This module provides classes based on RandomSampler but modified in such a way
that the output of the sampler is not random but is meant to be used in place
of uniformly random number sequences. Usually this is used to cover the sampling
space more “evenly” than a uniform random distribution would. Two methods are
implemented:

https://en.wikipedia.org/wiki/Latin_hypercube_sampling
https://en.wikipedia.org/wiki/Halton_sequence

	
class easyvvuq.sampling.quasirandom.HaltonSampler(vary=None, count=0, max_num=0, analysis_class=None)

	Bases: easyvvuq.sampling.random.RandomSampler

	
sampler_name = 'halton_sampler'

	

	
class easyvvuq.sampling.quasirandom.LHCSampler(vary=None, count=0, max_num=0, analysis_class=None)

	Bases: easyvvuq.sampling.random.RandomSampler

	
sampler_name = 'lhc_sampler'

	

easyvvuq.sampling.random module

	
class easyvvuq.sampling.random.RandomSampler(vary=None, count=0, max_num=0, analysis_class=None)

	Bases: easyvvuq.sampling.base.BaseSamplingElement

	
analysis_class

	Return a corresponding analysis class.

	
element_version()

	

	
is_finite()

	

	
n_samples()

	Returns the number of samples in this sampler.
:returns:
:rtype: if the user specifies maximum number of samples than return that, otherwise - error

	
sampler_name = 'random_sampler'

	

easyvvuq.sampling.replica_sampler module

Replica Sampler

Summary

Primarily intended for sampling the same paramater values but with
different random seed. Other uses may be possible. It takes a finite
sampler and produces an infinite sampler from it. This infinite
sampler loops through the parameters produced by the finite sampler
and at each cycle adds a unique id number for that cycle to the
parameter dictionary.

	
class easyvvuq.sampling.replica_sampler.ReplicaSampler(sampler, replica_col='ensemble_id', seed_col=None, replicas=0)

	Bases: easyvvuq.sampling.base.BaseSamplingElement

Replica Sampler

	Parameters

	
	sampler (an instance of a class derived from BaseSamplingElement) – a finite sampler to loop over

	replica_col (string) – a parameter name for the replica id

	seed_col (string) – a parameter name for the input parameter that specifies the RNG seed

	replicas (int) – number of replicas, if zero will result in an infinite sampler

	
analysis_class

	

	
inputs

	

	
is_finite()

	

	
iteration

	int([x]) -> integer
int(x, base=10) -> integer

Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.__int__(). For floating point
numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by ‘+’ or ‘-’ and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
>>> int(‘0b100’, base=0)
4

	
n_samples()

	

	
qoi

	

	
reset()

	

	
sampler_name = 'replica_sampler'

	

	
update(result, invalid)

	

easyvvuq.sampling.sampler_of_samplers module

	
class easyvvuq.sampling.sampler_of_samplers.MultiSampler(*samplers, count=0)

	Bases: easyvvuq.sampling.base.BaseSamplingElement

	
is_finite()

	

	
n_samples()

	Returns the number of samples in this sampler.

	Returns

	

	Return type

	a product of the sizes of samplers passed to MultiSampler

	
sampler_name = 'multisampler'

	

easyvvuq.sampling.simplex_stochastic_collocation module

THE SIMPLEX STOCASTIC COLLOCATION SAMPLER OF JEROEN WITTEVEEN (1980-2015)

Source:

Witteveen, J. A. S., & Iaccarino, G. (2013).
Simplex stochastic collocation with ENO-type stencil selection for robust
uncertainty quantification. Journal of Computational Physics, 239, 1-21.

Edeling, W. N., Dwight, R. P., & Cinnella, P. (2016).
Simplex-stochastic collocation method with improved scalability.
Journal of Computational Physics, 310, 301-328.

	
easyvvuq.sampling.simplex_stochastic_collocation.DAFSILAS(A, b, print_message=False)

	Direct Algorithm For Solving Ill-conditioned Linear Algebraic Systems,

solves the linear system when Ax = b when A is ill conditioned.

Solves for x in the non-null subspace of the solution as described in
the reference below. This method utilizes Gauss–Jordan elimination with
complete pivoting to identify the null subspace of a (almost) singular
matrix.

X. J. Xue, Kozaczek, K. J., Kurtzl, S. K., & Kurtz, D. S. (2000). A direct
algorithm for solving ill-conditioned linear algebraic systems.
Adv. X-Ray Anal, 42.

	
class easyvvuq.sampling.simplex_stochastic_collocation.SSCSampler(vary=None, max_polynomial_order=4)

	Bases: easyvvuq.sampling.base.BaseSamplingElement

Simplex Stochastic Collocation sampler

	
check_LEC(p_j, v, S_j, n_mc, max_jobs=4)

	Check the Local Extremum Conserving propery of all simplex elements.

	Parameters

	
	p_j (array, shape (n_e,)) – The polynomial order of each element.

	v (array, shape (N + 1,)) – The (scalar) code outputs. #TODO:modify when vectors are allowed

	S_j (array, shape (n_e, n_s)) – The indices of all nearest neighbours points of each simplex j=1,..,n_e,
ordered from closest to the neighbour that furthest away. The first
n_xi + 1 indeces belong to the j-th simplex itself.

	n_mc (int) – The number of Monte Carlo samples to use in checking the LEC
conditions.

	max_jobs (int) – The number of LEC check (one per element) that can be run in
parallel.

	Returns

	

	Return type

	None.

	
check_LEC_j(p_j, v, S_j, n_mc, queue)

	Check the LEC conditin of the j-th interpolation stencil.

	Parameters

	
	p_j (int) – The polynomial order of the j-th stencil.

	v (array) – The code samples.

	S_j (array, shape (N + 1,)) – The interpolation stencil of the j-th simplex element, expressed
as the indices of the simplex points.

	n_mc (int) – The number of Monte Carlo samples to use in checking the LEC
conditions.

	queue (multiprocessing queue object) – Used to store the results.

	Returns

	in the queue)

	Return type

	None, results (polynomial order and element indices are stored

	
compute_ENO_stencil(p_j, S_j, el_idx, max_jobs=4)

	Compute the Essentially Non-Oscillatory stencils. The idea behind ENO
stencils is to have higher degree interpolation stencils up to a thin
layer of simplices containing the discontinuity. For a given simplex,
its ENO stencil is created by locating all the nearest-neighbor
stencils that contain element j , and subsequently selecting the one
with the highest polynomial order p_j . This leads to a Delaunay
triangulation which captures the discontinuity better than its
nearest-neighbor counterpart.

	Parameters

	
	p_j (array, shape (n_e,)) – The polynomial order of each simplex element.

	S_j (array, shape (n_e, n_s)) – The indices of all nearest neighbours points of each simplex j=1,..,n_e,
ordered from closest to the neighbour that furthest away. The first
n_xi + 1 indeces belong to the j-th simplex itself.

	el_idx (dict) – The element indices for each interpolation stencil.
el_idx[2] gives the elements indices of the 3rd interpolation
stencil. The number of elements is determined by the local
polynomial order.

	max_jobs (int, optional) – The number of ENO stencils that are computed in parallel.
The default is 4.

	Returns

	
	ENO_S_j (array, shape (n_e, n_s)) – The ENO stencils for each element.

	p_j (array, shape (n_e,)) – The new polynomial order of each element.

	el_idx (dict) – The new element indices for each interpolation stencil.

	
compute_ENO_stencil_j(p_j, S_j, xi_centers, j, el_idx, queue)

	Compute the ENO stencil of the j-th element.

	Parameters

	
	p_j (array, shape (n_e,)) – The polynomial order of each simplex element.

	S_j (array, shape (n_e, n_s)) – The indices of all nearest neighbours points of each simplex j=1,..,n_e,
ordered from closest to the neighbour that furthest away. The first
n_xi + 1 indeces belong to the j-th simplex itself.

	xi_centers (array, shape (n_e,)) – The center of each simplex.

	j (int) – The index of the current simplex.

	el_idx (dict) – The element indices for each interpolation stencil.
el_idx[2] gives the elements indices of the 3rd interpolation
stencil. The number of elements is determined by the local
polynomial order.

	queue (multiprocessing queue object) – Used to store the results.

	Returns

	in the queue)

	Return type

	None, results (polynomial order and element indices are stored

	
compute_Psi(xi_Sj, pmax)

	Compute the Vandermonde matrix Psi, given N + 1 points xi from the
j-th interpolation stencil, and a multi-index set of polynomial
orders |i| = i_1 + … + i_n_xi <= polynomial order.

	Parameters

	
	xi_Sj (array, shape (N + 1, n_xi)) – The simplex n_xi-dimensional points of the j-th interpolation
stencil S_j.

	pmax (int) – The max polynomial order of the local stencil.

	Returns

	Psi – The Vandermonde interpolation matrix consisting of monomials
xi_1 ** i_1 + … + xi_{n_xi} ** i_{n_xi}.

	Return type

	array, shape (N + 1, N + 1)

	
compute_eps_bar_j(p_j, prob_j)

	

 easyvvuq.utils package

easyvvuq.utils package

Submodules

easyvvuq.utils.db_benchmark module

	
easyvvuq.utils.db_benchmark.benchmark(nsamples)

	

easyvvuq.utils.helpers module

	
easyvvuq.utils.helpers.easyvvuq_deserialize(s)

	Takes a serialized objected and reconstructs it.

	Parameters

	s (str) – A serialized Python object.

	Returns

	A previously serialized Python object.

	Return type

	obj

	
easyvvuq.utils.helpers.easyvvuq_serialize(obj)

	Takes an object and returns a string with that object serialized.

	Parameters

	obj (obj) – An arbitrary Python object.

	Returns

	A string representation of obj.

	Return type

	str

	
easyvvuq.utils.helpers.multi_index_tuple_parser(lst)

	Parses a list of strings to tuples if they represent tuples, otherwise
leaves them as is.

	Parameters

	lst (list of strings)

	Returns

	
	a tuple consisting of a list of tuples and/or strings and a bool indicating if

	the lst contains any tuples

	
easyvvuq.utils.helpers.remove_start_of_file(filename, delimiter)

	Overwrite a file leaving only the portion of it after the
delimiter string.

	Parameters

	
	filename (str) – the name (and path) of the file to processs

	delimiter (str) – the string after which the file is copied over

Module contents

 easyvvuq package

easyvvuq package

Subpackages

	easyvvuq.actions package
	Submodules

	easyvvuq.actions.action_statuses module

	easyvvuq.actions.execute_kubernetes module

	easyvvuq.actions.execute_local module

	easyvvuq.actions.execute_qcgpj module

	easyvvuq.actions.execute_qcgpj_task module

	easyvvuq.actions.execute_slurm module

	Module contents

	easyvvuq.analysis package
	Submodules

	easyvvuq.analysis.base module

	easyvvuq.analysis.basic_stats module

	easyvvuq.analysis.ensemble_boot module

	easyvvuq.analysis.gp_analyse module

	easyvvuq.analysis.mcmc module

	easyvvuq.analysis.pce_analysis module

	easyvvuq.analysis.qmc_analysis module

	easyvvuq.analysis.results module

	easyvvuq.analysis.sc_analysis module

	easyvvuq.analysis.ssc_analysis module

	Module contents

	easyvvuq.comparison package
	Submodules

	easyvvuq.comparison.base module

	easyvvuq.comparison.validate module

	Module contents

	easyvvuq.db package
	Submodules

	easyvvuq.db.base module

	easyvvuq.db.sql module

	Module contents

	easyvvuq.decoders package
	Submodules

	easyvvuq.decoders.hdf5 module

	easyvvuq.decoders.json module

	easyvvuq.decoders.simple_csv module

	easyvvuq.decoders.yaml module

	Module contents

	easyvvuq.encoders package
	Submodules

	easyvvuq.encoders.copy_encoder module

	easyvvuq.encoders.directory_builder module

	easyvvuq.encoders.generic_template module

	easyvvuq.encoders.jinja_encoder module

	easyvvuq.encoders.multiencoder module

	Module contents

	easyvvuq.sampling package
	Submodules

	easyvvuq.sampling.base module

	easyvvuq.sampling.csv_sampler module

	easyvvuq.sampling.dataframe_sampler module

	easyvvuq.sampling.empty module

	easyvvuq.sampling.grid_sampler module

	easyvvuq.sampling.mc_sampler module

	easyvvuq.sampling.mcmc module

	easyvvuq.sampling.pce module

	easyvvuq.sampling.qmc module

	easyvvuq.sampling.quasirandom module
	Summary

	easyvvuq.sampling.random module

	easyvvuq.sampling.replica_sampler module
	Summary

	easyvvuq.sampling.sampler_of_samplers module

	easyvvuq.sampling.simplex_stochastic_collocation module
	THE SIMPLEX STOCASTIC COLLOCATION SAMPLER OF JEROEN WITTEVEEN (1980-2015)

	easyvvuq.sampling.stochastic_collocation module

	easyvvuq.sampling.sweep module

	Module contents
	Summary

	easyvvuq.utils package
	Submodules

	easyvvuq.utils.db_benchmark module

	easyvvuq.utils.helpers module

	Module contents

Submodules

easyvvuq.base_element module

	
class easyvvuq.base_element.BaseElement

	Bases: object

Baseclass for all EasyVVUQ elements.

	
element_category()

	

	
element_name()

	

	
element_version()

	

easyvvuq.campaign module

EasyVVUQ Campaign

This module contains the Campaign class that is used to coordinate all
EasyVVUQ workflows.

	
class easyvvuq.campaign.Campaign(name, params=None, actions=None, db_location=None, work_dir='./', change_to_state=False, verify_all_runs=True)

	Bases: object

Campaigns organise the dataflow in EasyVVUQ workflows.

The Campaign functions as as state machine for the VVUQ workflows. It uses a
database (CampaignDB) to store information on both the target application
and the VVUQ algorithms being employed. It also collects data from the simulations
and can be used to store and resume your state.

Notes

Multiple campaigns can be combined in a CampaignDB. Hence the particular
campaign we are currently working on will be specified using campaign_id.

	Parameters

	
	name (str) – Name of the Campaign. Freely chosen, serves as a human-readable way of distinguishing
between several campaigns in the same database.

	params (dict, optional) – Description of the parameters to associated with the application. Will be used to create
an app when creating the campaign. It is also possible to add apps manually using add_app
method of the Campaign class. But this can be a useful shorthand when working with single
app campaigns. To use this functionality both params and actions has to be specified.
The name of this app will be the same as the name of the Campaign.

	actions (Actions, optional) – Actions object associated with an application. See description of the params parameter
for more details.

	db_location (str, optional) – Location of the underlying campaign database - either a path or
acceptable URI for SQLAlchemy.

	work_dir (str, optional, default=’./’) – Path to working directory - used to store campaign directory.

	change_to_state (bool, optional, default=False) – Should we change to the directory containing any specified state_file
in order to make relative paths work.

	verify_all_runs (bool, optional, default=True) – Check all new runs being added for unrecognised params (not defined for the currently set
app), values lying within defined physical range, type checking etc. This should normally
always be set to True, but in cases where the performance is too degraded, the checks can
be disabled by setting to False.

	Variables

	
	campaign_name (str or None) – Name for the campaign/workflow.

	_campaign_dir (str or None) – Path to the directory campaign uses for local storage (runs inputs etc)

	db_location (str or None) – Location of the underlying campaign database - either a path or
acceptable URI for SQLAlchemy.

	_log (list) – The log of all elements that have been applied, with information about
their application

	campaign_id (int) – ID number for the current campaign in the db.CampaignDB.

	campaign_db (easyvvuq.db.Basedb.CampaignDB) – A campaign database object

	last_analysis – The result of the most recent analysis carried out on this campaign

	_active_app (dict) – Info about currently set app

	_active_app_name (str) – Name of currently set app

	_active_sampler_id (int) – The database id of the currently set Sampler object

Examples

A typical instantiation might look like this.

>>> params = {
 "S0": {"type": "float", "default": 997},
 "I0": {"type": "float", "default": 3},
 "beta": {"type": "float", "default": 0.2},
 "gamma": {"type": "float", "default": 0.04, "min": 0.0, "max": 1.0},
 "iterations": {"type": "integer", "default": 100},
 "outfile": {"type": "string", "default": "output.csv"}
 }
>>> encoder = uq.encoders.GenericEncoder(template_fname='sir.template', delimiter='$', target_filename='input.json')
>>> decoder = uq.decoders.SimpleCSV(target_filename='output.csv', output_columns=['I'])
>>> actions = uq.actions.local_execute(encoder, os.path.abspath('sir') + ' input.json', decoder)
>>> campaign = uq.Campaign(name='sir', params=params, actions=actions)

A simplified one (without an app) might look simply like this.

>>> campaign = Campaign('simple')

An app then can be added.

>>> campaign.add_app('simple_app', params=params, actions=actions)

	
add_app(name=None, params=None, actions=None, set_active=True)

	Add an application to the CampaignDB.

	Parameters

	
	name (str) – Name of the application.

	params (dict) – Description of the parameters to associate with the application.

	actions (Actions) – An instance of Actions containing actions to be executed

	set_active (bool) – Should the added app be set to be the currently active app?

	
add_external_runs(input_files, output_files, input_decoder, output_decoder)

	Takes a list of files and adds them to the database. This method is to be
used when adding runs to the EasyVVUQ database that were not executed using
EasyVVUQ.

	Parameters

	
	output_files (list of str) – A list of output file paths to be loaded to the database.

	decoder (Decoder) – A decoder that will be used to parse these files.

	
add_runs(runs, mark_invalid=False)

	Add runs to the database.

	Parameters

	
	runs (list of dicts) – Each dict defines the value of each model parameter listed in
self.params_info for a run to be added to self.runs

	mark_invalid (bool) – Will mark runs that fail verification as invalid (but will not raise an exception)

	
analyse(**kwargs)

	If available will call an appropriate analysis class on the collation result.

	Parameters

	**kwargs (dict) – Argument to the analysis class constructor (after sampler).

	Returns

	An object representing analysis results. Can be used to interact with those results
in some way. Plot, retrieve surrogate models and so on.
See easyvvuq.analysis.AnalysisResults for further information.

	Return type

	AnalysisResults

	
apply_analysis(analysis)

	Run the analysis element on the output of the last run collation.

	Parameters

	analysis (Analysis) – Element that performs a VVUQ analysis on a dataframe summary of
run outputs.

	
apply_for_each_sample(actions, status=<Status.NEW: 1>, sequential=False)

	For each run in this Campaign’s run list, apply the specified action
(an object of type Action).

	Parameters

	
	actions (Actions) – Actions to be applied to each relevant run in the database.

	status (Status) – Will apply the Actions only to those runs whose status is as specified.

	sequential (bool) – Whether to process samples sequentially (sometimes more efficient or you might
want to avoid the concurrent module for some reason).

	Returns

	An object containing ActionStatus instances to track action execution.

	Return type

	ActionPool

	
campaign_dir

	Get the path in which to load/save files related to the campaign.

	Returns

	Path to the campaign directory - given as a subdirectory of the
working directory.

	Return type

	str

	
draw_samples(num_samples=0, mark_invalid=False)

	Draws num_samples sets of parameters from the currently set
sampler, resulting in num_samples new runs added to the
runs list. If num_samples is 0 (its default value) then
this method draws ALL samples from the sampler, until exhaustion (this
will fail if the sampler is not finite).

	Parameters

	
	num_samples (int) – Number of samples to draw from the active sampling element.
By default is 0 (draw ALL samples)

	mark_invalid (bool) – If True will mark runs that go outside valid parameter range as INVALID.
This is useful for MCMC style methods where you want those runs to evaluate
to low probabilities.

	
execute(nsamples=0, pool=None, mark_invalid=False, sequential=False)

	This will draw samples and execute the Actions on those samples.

	Parameters

	
	nsamples (int) – Number of samples to draw. For infinite samplers or when you want to process
samples in batches.

	pool (Executor) – A pool object to be used when processing runs (e.g. instance of ThreadPoolExecutor or
ProcessPoolExecutor).

	mark_invalid (bool) – Mark runs that go outside the specified input parameter range as INVALID.

	sequential (bool) – Whether to process samples sequentially (sometimes more efficient or you might
want to avoid the concurrent module for some reason).

	
get_active_app()

	Returns a dict of information regarding the application that is currently
set for this campaign.

	
get_active_sampler()

	Return the active sampler element in use by this campaign.

	Returns

	

	Return type

	The sampler currently in use

	
get_campaign_runs_dir()

	Get the runs directory from the CampaignDB.

	Returns

	Path in which the runs information will be written.

	Return type

	str

	
get_collation_result(last_iteration=False)

	Return dataframe containing all collated results

	Parameters

	last_iteration (bool) – Will only return the result of the last iteration.

	Returns

	A DataFrame with the simulation results along with the inputs
used to produce them.

	Return type

	DataFrame

	
get_invalid_runs(last_iteration=False)

	Return dataframe containing all results marked as INVALID.

	Parameters

	last_iteration (bool) – Will only return the result of the last iteration.

	Returns

	A DataFrame with the results form simulations that were marked as INVALID.
These will usually be the ones that went outside the specified parameter ranges.
These still have to be accounted for in some way by some methods (e.g. MCMC).

	Return type

	DataFrame

	
get_last_analysis()

	Return the output of the most recently run analysis element.

	
ignore_runs(list_of_run_IDs)

	Flags the specified runs to be IGNORED in future collation. Note that
this does NOT remove previously collated results from the collation table.
For that you must refresh the collation by running recollate().

	Parameters

	list – The list of run IDs for the runs that should be set to status IGNORED

	
init_db(name, work_dir='.')

	Initialize the connection with the database and either resume or create the campaign.

	Parameters

	
	name (str) – Name of the campaign.

	work_dir (str) – Work directory, defaults to cwd.

	
iterate(nsamples=0, pool=None, mark_invalid=False, sequential=False)

	This is the equivalent of execute for methods that rely on the output of the
previous sampling stage (designed for MCMC, should work for others).

	Parameters

	
	nsamples (int) – Number of samples to draw (during a single iteration).

	pool (Executor) – An Executor instance. For example ThreadPoolExecutor or a Dask Client. Defaults
to the ThreadPoolExecutor.

	mark_invalid (bool) – Mark runs that go outside the specified input parameter range as INVALID.

	sequential (bool) – Will execute the Actions associated with runs sequentially. Might be more
efficient in some situations.

	Yields

	ActionPool – An object containing Futures instances to track action execution.

	
list_runs(sampler=None, campaign=None, app_id=None, status=None)

	Get list of runs in the CampaignDB.

	Parameters

	
	sampler (int) – Sampler id to filter for.

	campaign (int) – Campaign id to filter for.

	app_id (int) – App id to filter for.

	status (Status) – Status to filter for.

	Returns

	

	Return type

	list of runs

	
recollate()

	Clears the current collation table, changes all COLLATED status runs
back to ENCODED, then runs collate() again

	
relocate(campaign_dir)

	Relocate the campaign by specifying a new path where campaign is located.

	Parameters

	new_path (str) – new runs directory

	
replace_actions(app_name, actions)

	Replace actions for an app with a given name.

	Parameters

	
	app_name (str) – Name of the app.

	actions (Actions) – Actions instance, will replace the current Actions of an app.

	
rerun(list_of_run_IDs)

	Sets the status of the specified runs to ENCODED, so that their results
may be recollated later (presumably after extending, rerunning or otherwise
modifying the data in the relevant run folder). Note that this method will
NOT perform any execution - it simply flags the run in EasyVVUQ as being
uncollated. Actual execution is (as usual) the job of the user or middleware.

	Parameters

	list – The list of run IDs for the runs that should be set to status ENCODED

	
set_app(app_name)

	Set active app for the campaign.

Application information is retrieved from self.campaign_db.

	Parameters

	app_name (str) – Name of selected app, if None given then first app will be
selected.

	
set_sampler(sampler, update=False)

	Set active sampler.

	Parameters

	
	sampler (Sampler) – Sampler that will be used to create runs for the current campaign.

	update (bool) – If set to True it will not add the sampler to the database, just change
it as the active sampler.

easyvvuq.constants module

Constants and Enums to set defaults and constrain selections

	ivar default_campaign_prefix

	Text used to ensure campaign names are identifiable and somewhat human
readable.

	vartype default_campaign_prefix

	str

	
class easyvvuq.constants.OutputType

	Bases: enum.Enum

Types of data output by UQPs/VVPs

	
ARRAY = 'array'

	

	
SAMPLE = 'sample'

	

	
SAMPLE_ARRAY = 'sample_array'

	

	
SUMMARY = 'summary'

	

	
TRACK = 'track'

	

	
class easyvvuq.constants.Status

	Bases: enum.IntEnum

Status of runs in the Run Table

	
COLLATED = 3

	

	
ENCODED = 2

	

	
IGNORED = 4

	

	
INVALID = 5

	

	
NEW = 1

	

easyvvuq.data_structs module

Data structures to ensure consistency during serialization for databases.

	
class easyvvuq.data_structs.AppInfo(name=None, paramsspec=None, actions=None)

	Bases: object

Handles information for particular application.

	Variables

	
	name (str or None) – Human readable application name.

	paramsspec (ParamsSpecification or None) – Description of possible parameter values.

	
to_dict(flatten=False)

	Convert to a dictionary (optionally flatten to single level)

	Parameters

	flatten (bool) – Should the return dictionary be single level (i.e. should paramsspec
be serialized).

	Returns

	Dictionary representing the application- if flattened then paramsspec
is returned as a JSON format sting.

	Return type

	dict

	
class easyvvuq.data_structs.CampaignInfo(name=None, easyvvuq_version=None, campaign_dir_prefix=None, campaign_dir=None, runs_dir=None, local=False)

	Bases: object

Handles information on Campaign.

	Parameters

	
	name (str or None) – Human readable campaign name.

	easyvvuq_version (str or None) – Version of EasyVVUQ used to create the campaign.

	campaign_dir_prefix (str or None) – Prefix test for campaign directory.

	campaign_dir (str or None,) – Path to the campaign directory.

	runs_dir (str or None) – path to run directory (within the campaign directory)

	local (bool, default=False) – Is this campaign designed to be created and executed on the same
machine?

	Variables

	
	name (str or None) – Human readable campaign name.

	easyvvuq_version (str or None) – Version of EasyVVUQ used to create the campaign.

	campaign_dir_prefix (str or None) – Prefix test for campaign directory.

	campaign_dir (str or None,) – Path to the campaign directory.

	runs_dir (str or None) – path to run directory (within the campaign directory)

	
easyvvuq_version

	

	
to_dict(flatten=False)

	Convert this to a dictionary

	Parameters

	flatten (bool) – Should the return dictionary be single level (always true here).

	Returns

	Dictionary representing the campaign.

	Return type

	dict

	
class easyvvuq.data_structs.RunInfo(run_name=None, run_dir=None, app=None, params=None, sample=None, campaign=None, status=<Status.NEW: 1>)

	Bases: object

Handles information for individual application runs.

	Parameters

	
	run_name (str) – Human readable name of the run.

	app (None or int) – ID of the associated application.

	params (None or dict) – Dictionary of parameter values for this run.

	sample (None or int) – ID of the sampler that created the run.

	campaign (None or int) – ID of the associated campaign.

	Variables

	
	campaign (int) – ID of the associated campaign.

	sample (int) – ID of the sampler that created the run.

	app (int) – ID of the associated application.

	run_name (str) – Human readable name of the run.

	status (enum(Status)) –

	
to_dict(flatten=False)

	Convert to a dictionary (optionally flatten to single level)

	Parameters

	flatten (bool) – Should the return dictionary be single level (i.e. should params
or other dictionary variables be serialized).

	Returns

	Dictionary representing the run - if flattened then params are
returned as a JSON format sting.

	Return type

	dict

	
easyvvuq.data_structs.check_local_dir(path, dir_type='campaign')

	Check that local path exists and if not create it.

	Parameters

	
	path (str) – Directory location to check.

	dir_type (str, default=’campaign’) – Type of directory we are checking (used for user and debugging
information.)

	
easyvvuq.data_structs.check_reference(ref, run_name, ref_type='campaign')

	Validation check for a RunInfo reference. Checks that an integer value
has been passed to use as a reference to another ‘table’ - i.e. to a
specific campaign, app or sampler.

	Parameters

	
	ref (int) – Reference to be checked.

	run_name (str) – Name of run for which the check is being performed (user info/
debugging).

	ref_type (str, default=’campaign’) – Are we checking for a campaign, sampler or app (user info/
debugging).

easyvvuq.params_specification module

Data structures to ensure consistency during serialization for databases.

	
class easyvvuq.params_specification.EasyVVUQValidator(*args, **kwargs)

	Bases: cerberus.validator.Validator

Validator class. Normalizes and/or validates any mapping against a
validation-schema which is provided as an argument at class instantiation
or upon calling the validate(),
validated() or
normalized() method. An instance itself is
callable and executes a validation.

All instantiation parameters are optional.

There are the introspective properties types, validators,
coercers, default_setters, rules,
normalization_rules and validation_rules.

The attributes reflecting the available rules are assembled considering
constraints that are defined in the docstrings of rules’ methods and is
effectively used as validation schema for schema.

	Parameters

	
	schema (any mapping) – See schema.
Defaults to None.

	ignore_none_values (bool) – See ignore_none_values.
Defaults to False.

	allow_unknown (bool or any mapping) – See allow_unknown.
Defaults to False.

	require_all (bool) – See require_all.
Defaults to False.

	purge_unknown (bool) – See purge_unknown.
Defaults to to False.

	purge_readonly (bool) – Removes all fields that are defined as readonly in the
normalization phase.

	error_handler (class or instance based on
BaseErrorHandler or
tuple) – The error handler that formats the result of
errors.
When given as two-value tuple with an error-handler
class and a dictionary, the latter is passed to the
initialization of the error handler.
Default: BasicErrorHandler.

	
checkers = ()

	

	
coercers = ()

	

	
default_setters = ()

	

	
normalization_rules = {'coerce': {'oneof': [{'type': 'callable'}, {'type': 'list', 'schema': {'oneof': [{'type': 'callable'}, {'type': 'string', 'allowed': ()}]}}, {'type': 'string', 'allowed': ()}]}, 'default': {'nullable': True}, 'default_setter': {'oneof': [{'type': 'callable'}, {'type': 'string', 'allowed': ()}]}, 'purge_unknown': {'type': 'boolean'}, 'rename': {'type': 'hashable'}, 'rename_handler': {'oneof': [{'type': 'callable'}, {'type': 'list', 'schema': {'oneof': [{'type': 'callable'}, {'type': 'string', 'allowed': ()}]}}, {'type': 'string', 'allowed': ()}]}}

	

	
rules = {'allof': {'logical': 'allof', 'type': 'list'}, 'allow_unknown': {'oneof': [{'type': 'boolean'}, {'type': ['dict', 'string'], 'check_with': 'bulk_schema'}]}, 'allowed': {'type': 'container'}, 'anyof': {'logical': 'anyof', 'type': 'list'}, 'check_with': {'oneof': [{'type': 'callable'}, {'type': 'list', 'schema': {'oneof': [{'type': 'callable'}, {'type': 'string', 'allowed': ()}]}}, {'type': 'string', 'allowed': ()}]}, 'coerce': {'oneof': [{'type': 'callable'}, {'type': 'list', 'schema': {'oneof': [{'type': 'callable'}, {'type': 'string', 'allowed': ()}]}}, {'type': 'string', 'allowed': ()}]}, 'contains': {'empty': False}, 'default': {'nullable': True}, 'default_setter': {'oneof': [{'type': 'callable'}, {'type': 'string', 'allowed': ()}]}, 'dependencies': {'check_with': 'dependencies', 'type': ('dict', 'hashable', 'list')}, 'empty': {'type': 'boolean'}, 'excludes': {'schema': {'type': 'hashable'}, 'type': ('hashable', 'list')}, 'forbidden': {'type': 'list'}, 'items': {'check_with': 'items', 'type': 'list'}, 'keysrules': {'check_with': 'bulk_schema', 'forbidden': ['rename', 'rename_handler'], 'type': ['dict', 'string']}, 'max': {'nullable': False}, 'maxlength': {'type': 'integer'}, 'meta': {}, 'min': {'nullable': False}, 'minlength': {'type': 'integer'}, 'noneof': {'logical': 'noneof', 'type': 'list'}, 'nullable': {'type': 'boolean'}, 'oneof': {'logical': 'oneof', 'type': 'list'}, 'purge_unknown': {'type': 'boolean'}, 'readonly': {'type': 'boolean'}, 'regex': {'type': 'string'}, 'rename': {'type': 'hashable'}, 'rename_handler': {'oneof': [{'type': 'callable'}, {'type': 'list', 'schema': {'oneof': [{'type': 'callable'}, {'type': 'string', 'allowed': ()}]}}, {'type': 'string', 'allowed': ()}]}, 'require_all': {'type': 'boolean'}, 'required': {'type': 'boolean'}, 'schema': {'anyof': [{'check_with': 'schema'}, {'check_with': 'bulk_schema'}], 'type': ['dict', 'string']}, 'type': {'check_with': 'type', 'type': ['string', 'list']}, 'valuesrules': {'check_with': 'bulk_schema', 'forbidden': ['rename', 'rename_handler'], 'type': ['dict', 'string']}}

	

	
validation_rules = {'allof': {'logical': 'allof', 'type': 'list'}, 'allow_unknown': {'oneof': [{'type': 'boolean'}, {'type': ['dict', 'string'], 'check_with': 'bulk_schema'}]}, 'allowed': {'type': 'container'}, 'anyof': {'logical': 'anyof', 'type': 'list'}, 'check_with': {'oneof': [{'type': 'callable'}, {'type': 'list', 'schema': {'oneof': [{'type': 'callable'}, {'type': 'string', 'allowed': ()}]}}, {'type': 'string', 'allowed': ()}]}, 'contains': {'empty': False}, 'dependencies': {'check_with': 'dependencies', 'type': ('dict', 'hashable', 'list')}, 'empty': {'type': 'boolean'}, 'excludes': {'schema': {'type': 'hashable'}, 'type': ('hashable', 'list')}, 'forbidden': {'type': 'list'}, 'items': {'check_with': 'items', 'type': 'list'}, 'keysrules': {'check_with': 'bulk_schema', 'forbidden': ['rename', 'rename_handler'], 'type': ['dict', 'string']}, 'max': {'nullable': False}, 'maxlength': {'type': 'integer'}, 'meta': {}, 'min': {'nullable': False}, 'minlength': {'type': 'integer'}, 'noneof': {'logical': 'noneof', 'type': 'list'}, 'nullable': {'type': 'boolean'}, 'oneof': {'logical': 'oneof', 'type': 'list'}, 'readonly': {'type': 'boolean'}, 'regex': {'type': 'string'}, 'require_all': {'type': 'boolean'}, 'required': {'type': 'boolean'}, 'schema': {'anyof': [{'check_with': 'schema'}, {'check_with': 'bulk_schema'}], 'type': ['dict', 'string']}, 'type': {'check_with': 'type', 'type': ['string', 'list']}, 'valuesrules': {'check_with': 'bulk_schema', 'forbidden': ['rename', 'rename_handler'], 'type': ['dict', 'string']}}

	

	
class easyvvuq.params_specification.ParamsSpecification(params, appname=None)

	Bases: object

	
static deserialize(serialized_params)

	

	
process_run(new_run, verify=True)

	

	
serialize()

	

Module contents

 easyvvuq

easyvvuq

	easyvvuq package
	Subpackages
	easyvvuq.actions package
	Submodules

	easyvvuq.actions.action_statuses module

	easyvvuq.actions.execute_kubernetes module

	easyvvuq.actions.execute_local module

	easyvvuq.actions.execute_qcgpj module

	easyvvuq.actions.execute_qcgpj_task module

	easyvvuq.actions.execute_slurm module

	Module contents

	easyvvuq.analysis package
	Submodules

	easyvvuq.analysis.base module

	easyvvuq.analysis.basic_stats module

	easyvvuq.analysis.ensemble_boot module

	easyvvuq.analysis.gp_analyse module

	easyvvuq.analysis.mcmc module

	easyvvuq.analysis.pce_analysis module

	easyvvuq.analysis.qmc_analysis module

	easyvvuq.analysis.results module

	easyvvuq.analysis.sc_analysis module

	easyvvuq.analysis.ssc_analysis module

	Module contents

	easyvvuq.comparison package
	Submodules

	easyvvuq.comparison.base module

	easyvvuq.comparison.validate module

	Module contents

	easyvvuq.db package
	Submodules

	easyvvuq.db.base module

	easyvvuq.db.sql module

	Module contents

	easyvvuq.decoders package
	Submodules

	easyvvuq.decoders.hdf5 module

	easyvvuq.decoders.json module

	easyvvuq.decoders.simple_csv module

	easyvvuq.decoders.yaml module

	Module contents

	easyvvuq.encoders package
	Submodules

	easyvvuq.encoders.copy_encoder module

	easyvvuq.encoders.directory_builder module

	easyvvuq.encoders.generic_template module

	easyvvuq.encoders.jinja_encoder module

	easyvvuq.encoders.multiencoder module

	Module contents

	easyvvuq.sampling package
	Submodules

	easyvvuq.sampling.base module

	easyvvuq.sampling.csv_sampler module

	easyvvuq.sampling.dataframe_sampler module

	easyvvuq.sampling.empty module

	easyvvuq.sampling.grid_sampler module

	easyvvuq.sampling.mc_sampler module

	easyvvuq.sampling.mcmc module

	easyvvuq.sampling.pce module

	easyvvuq.sampling.qmc module

	easyvvuq.sampling.quasirandom module

	easyvvuq.sampling.random module

	easyvvuq.sampling.replica_sampler module

	easyvvuq.sampling.sampler_of_samplers module

	easyvvuq.sampling.simplex_stochastic_collocation module

	easyvvuq.sampling.stochastic_collocation module

	easyvvuq.sampling.sweep module

	Module contents

	easyvvuq.utils package
	Submodules

	easyvvuq.utils.db_benchmark module

	easyvvuq.utils.helpers module

	Module contents

	Submodules

	easyvvuq.base_element module

	easyvvuq.campaign module

	easyvvuq.constants module

	easyvvuq.data_structs module

	easyvvuq.params_specification module

	Module contents

 Basic Tutorial

Basic Tutorial

This tutorial shows a simple EasyVVUQ workflow in action.
The example is slightly daft (it uses a program, gauss.py program which
simply samples values from a Gaussian distribution),
but illustrates how EasyVVUQ samples from a parameter space, wraps an
application and analyses output.

The input files for this tutorial are the gauss application
(gauss.py), an input template
(gauss.template) and the EasyVVUQ workflow
script (easyvvuq_gauss_tutorial.py).
In preparation for this tutorial download the files and place them in
an empty directory, then change into this directory.

Important Note About the CSV File Format

Please note that when creating CSV files to be used with EasyVVUQ
and in the examples below, special care needs to be taken to respect
RFC 4180. One common issue is that people leave spaces around
attribute names in the first row of the text file. These spaces are
not trimmed and become part of the attribute name which causes
confusion later.

For example:

attr1,attr2,attr3

is correct, while:

attr1, attr2, attr3

Is wrong (unless your attribute names are meant to have a space at the
start).

Gauss Application

The usage of the gauss.py application is:

gauss.py <input_file>

It outputs a single file called output.csv, which has two columns
‘Steps’ and ‘Value’.

The gauss.template is a template input file, in JSON format

{"outfile": "$out_file", "num_steps": "$num_steps", "mu": "$mu", "sigma": "$sigma"}

The values for each key are tags (signified by the $ delimiter) which will
be substituted by EasyVVUQ with values to sample the parameter space.
In the following tutorial, the template will be used to generate files called
in_file.json that will be the input to each run of gauss.py.

Uncertainty Quantification Workflow

In this dummy workflow we will use the gauss application to produce values
from normal distributions centred on 3 different means mu), using 5 repeat
(‘replica’) runs for each one.
The output will be collected for each run and bootstrap statistics calculated
for each set of runs.

EasyVVUQ Script Overview

The script easyvvuq_gauss_tutorial.py implements the workflow described above using
EasyVVUQ.
The commands are split into sections which are indicated by numbered comments.
Sections 1 to 9 contain the core EasyVVUQ workflow, section 0 sets up
convenience variables related to the application.

Note

In this tutorial application execution is handled locally and by
EasyVVUQ functions. In real world applications (especially for HPC
applications the run step is beyond the scope of EasyVVUQ.

To run the workflow execute the following command

python3 easyvvuq_gauss_tutorial.py

If this works you should see 15 lines that look something like:

Applying easyvvuq.actions.execute_local to <run-location>/EasyVVUQ_Campaign_zxe7_cb2/runs/Run_1…

where <run-location> is the directory in which you ran the script and
EasyVVUQ_Campaign_zxe7_cb2 is an example of the unique directory that
EasyVVUQ created to hold all of the files created relating to a campaign.

Followed by a results table that looks like:

stats:
 Value
 boot high low
mu
44.539790 44.490930 44.372364 44.553067
57.115719 57.128225 57.015388 57.175946
61.319723 61.319182 61.225901 61.392122

The ‘mu’ values are chosen at random so your output values will be different.
The statistics represent the variation across the 5 replica runs executed for
each of the 3 ‘mu’ values sampled.

Below we go through each section of the workflow, explaining each step and the
EasyVVUQ elements used to perform them.

Section 0: Application Setup

This section contains no EasyVVUQ functionality.
It sets up variables to store the command used to run the gauss application,
the names of the input and output filenames and the template used to generate
the specific input for each run.

import os
cwd = os.getcwd()
input_filename = "gauss_in.json"
cmd = f"{cwd}/tutorial_files/gauss.py {input_filename}"
out_file = "output.csv"
Template input to substitute values into for each run
template = f"{cwd}/tutorial_files/gauss.template"

Section 1: Campaign Creation

The organizing principle within EasyVVUQ is the Campaign, this object
coordinates the workflow.
The Campaign acts as an interface to a database (CampaignDB) which will
store information about the application, the parameters it takes,
how these should be sampled and the runs used to perform the sampling.
Consequently, the first step of an EasyVVUQ workflow is to create a
Campaign, specifying a name and working directory:

import easyvvuq as uq
my_campaign = uq.Campaign(name='gauss', work_dir=".")

The reason for having a name is that in some cases it may be necessary to
combine the output of multiple Campaigns in a single analysis and having a
name allows the data from each to be identified easily.

Section 2: Define Parameter Space

The basis of any uncertainty quantification workflow will be sampling in some
parameter space.
This space will be defined by the inputs of the applications which are being
investigated.
EasyVVUQ uses a simple format to define the possible space to be explored, it
is a Python dictionary with dictionary entries for each parameter.

All parameters require a ‘type’ (this is usually a standard Python data type)
and ‘default’ to be specified.
For numerical parameters a range, given by ‘min’ and ‘max’ values,
should also be provided.
The range is only used if the parameter is varied during the sampling step.

The parameter space for gauss reflects the options we saw in the gauss.template
template input:

params = {
 "sigma": {
 "type": "float",
 "min": 0.0,
 "max": 100000.0,
 "default": 0.25
 },
 "mu": {
 "type": "float",
 "min": 0.0,
 "max": 100000.0,
 "default": 1
 },
 "num_steps": {
 "type": "integer",
 "min": 0,
 "max": 100000,
 "default": 10
 },
 "out_file": {
 "type": "string",
 "default": "output.csv"
 }
}

The only two parameters which could (somewhat) sensibly be sampled are ‘mu’
(the mean of the gaussian) and ‘sigma’ the variance.
Nonetheless we need to provide a range for ‘num_steps’.
Notice that the keys in the parameter description match the tags in the template.

Note

The names of parameters here does not need to match the input of the
application directly. In the next section we will see how Decoder
elements map the parameter space to the application inputs.

Section 3: Wrap Application

In order for an application to be used in an EasyVVUQ workflow two processes
have to be accounted for:

1. the parameters being sampled need to be converted into a format that
the application can understand; we call this process encoding,
2. the application output must be converted into a standard form that can be
analysed (we use panda.DataFrame by default); we call this process decoding.

Within EasyVVUQ these actions are performed by Encoders and Decoders
respectively.
Both the Encoder and Decoder have to be executed for each run (sample).
The gauss application is simple and the input and output formats can be
interpreted by inbuilt classes.

The appropriate encoder here is the GenericEncoder, this takes a template file
and substitutes in values from the parameter space description (outputting to a
specified file).
We create the encoder using the following code:

encoder = uq.encoders.GenericEncoder(template_fname=template,
 target_filename=input_filename)

Note

The tags in the template here use the default $ delimiter.
Different delimiters can be specified using the delimiter keyword.

The output of gauss is a CSV format files, so we use a Decoder called SimpleCSV.
This requires us to specify the file to be read, the location of the header (line 0)
and the columns to keep in the data for analysis:

decoder = uq.decoders.SimpleCSV(
 target_filename=out_file,
 output_columns=['Step', 'Value'])

These choices are then added to the Campaign:

my_campaign.add_app(name="gauss",
 params=params,
 encoder=encoder,
 decoder=decoder)

Section 4: Specify Sampler

The backbone of EasyVVUQ workflows is the sampling of one or more parameters.
The type of element used to do this is (imaginatively) called a Sampler.
A Sampler implements an algorithm that chooses sets of parameters to span the
input parameter space.
The particular parameters to vary are specified by the user, along with the
distribution that they take.
The distributions are specified as Chaospy [https://chaospy.readthedocs.io/]
distributions.
In this example we simply pick ‘mu’ values from a uniform distribution between
1 and 100:

import chaospy as cp

vary = {
 "mu": cp.Uniform(1.0, 100.0),
}

my_sampler = uq.sampling.RandomSampler(vary=vary)

my_campaign.set_sampler(my_sampler)

Real world examples are likely to use more complicated algorithms (such as
quasi-Monte Carlo or stochastic collocation) but the way of specifying
parameters to vary remains the same.

Section 5: Get Run Parameters

Now that the Campaign is setup it can provide sets of parameters to
input into runs.
We draw samples the number of samples we want from the Sampler:

my_campaign.draw_samples(num_samples=3,
 replicas=5)

Here we have chosen to have 5 replicas (repeats) of each sample drawn.
At this stage all that happens is the parameter sets are added to the
CampaignDB, no input files have been generated.

Section 6: Create Input Directories

We now need to create the input files for each run.
The populate_runs_dir method of Campaign creates a directory for each run
and uses the specified Encoder to produce the appropriate input files:

my_campaign.populate_runs_dir()

Section 7: Run Application

To create our samples we need to execute all of the runs.
EasyVVUQ Campaigns provide a method apply_for_each_run_dir which allows
us to apply a function whilst in each run directory we have created.
Here we use the ExecuteLocal action to run the gauss application using the
command we specified in Step 0:

my_campaign.apply_for_each_run_dir(uq.actions.ExecuteLocal(cmd))

Section 8: Collate Output

The collection of simulation output simply handled by the Campaign:

my_campaign.collate()

Under the hood this method combines the use of the specified Decoder for
the current application, and the set Collation element to produce a summary
pandas.DataFrame including data from all runs. Each time this method is called,
it will append any new results to the dataframe.

Section 9: Run Analysis

The final element in the workflow is the analysis.
Here we apply bootstrapping analysis:

stats = uq.analysis.EnsembleBoot(groupby=["mu"], qoi_cols=["Value"])
my_campaign.apply_analysis(stats)

The groupby option specifies the parameters which should be used to group runs
together when calculating statistics, qoi_cols specifies which columns of the
output collected by the Decoder should analysed.

Some Final Points

The last command in the script simply prints out the results of the analysis,
stored in
my_campaign.get_last_analysis().
This is a pandas.DataFrame and can easily be output as a CSV or other file format.

It is instructive to look in the EasyVVUQ_Campaign_<random_characters> directory
to see the input and output files generated by each run.

 A Cooling Coffee Cup with Polynomial Chaos Expansion

A Cooling Coffee Cup with Polynomial Chaos Expansion

In this tutorial we will perform a Polynomial Chaos Expansion for a model of a cooling coffee cup.
The model uses Newton’s law of cooling to evolve the temperature, \(T\), over time (\(t\)) in an environment at \(T_{env}\):

\[\frac{dT(t)}{dt} = -\kappa (T(t) -T_{env})\]

The constant \(\kappa\) characterizes the rate at which the coffee cup transfers heat to the environment.
In this example we will analyze this model using the polynomial chaos expansion (PCE) UQ algorithm.
e will use a constant initial temperature \(T_0 = 95 ^\circ\text{C}\), and vary \(\kappa\) and \(T_{env}\) using a uniform distribution in the ranges \(0.025-0.075\) and \(15-25\) respectively.

Below we provide a commented script that shows how the Campaign is built up and then employed.
We also provide an outline of how each element is setup.

EasyVVUQ Script Overview

We illustrate the intended workflow using the following basic example script, a python implementation of the cooling coffee cup model used in the textit{uncertainpy} documentation (code for which is in the tests/cooling/ subdirectory of the EasyVVUQ distribution directory). The code takes a small key/value pair input and outputs a comma separated value CSV) file.

The input files for this tutorial are the cooling_model application (cooling_model.py),
an input template (cooling.template) and the EasyVVUQ workflow
script (easyvvuq_pce_tutorial.py).

To run the script execute the following command

python3 easyvvuq_pce_tutorial.py

Import necessary libraries

For this example we import both easyvvuq and chaospy (for the distributions). EasyVVUQ will be referred to as ‘uq’ in the code.

import easyvvuq as uq
import chaospy as cp

Create a new Campaign

As in the Basic Tutorial, we start by creating an EasyVVUQ Campaign. Here we call it ‘coffee_pce’.

my_campaign = uq.Campaign(name='coffee_pce')

Parameter space definition

The parameter space is defined using a dictionary. Each entry in the dictionary follows the format:

"parameter_name": {"type" : "<value>", "min": <value>, "max": <value>, "default": <value>}

With a defined type, minimum and maximum value and default. If the parameter is not selected to vary in the Sampler (see below) then the default value is used for every run. In this example, our full parameter space looks like the following:

params = {
 "temp_init": {"type": "float", "min": 0.0, "max": 100.0, "default": 95.0},
 "kappa": {"type": "float", "min": 0.0, "max": 0.1, "default": 0.025},
 "t_env": {"type": "float", "min": 0.0, "max": 40.0, "default": 15.0},
 "out_file": {"type": "string", "default": "output.csv"}
}

App Creation

In this example the GenericEncoder and SimpleCSV, both included in the core EasyVVUQ library, were used as the encoder/decoder pair for this application.

encoder = uq.encoders.GenericEncoder(
 template_fname='tutorial_files/cooling.template',
 delimiter='$',
 target_filename='cooling_in.json')

decoder = uq.decoders.SimpleCSV(target_filename="output.csv",
 output_columns=["te", "ti"])

GenericEncoder performs simple text substitution into a supplied template, using a specified delimiter to identify where parameters should be placed.
The template is shown below ($ is used as the delimiter).
The template substitution approach is likely to suit most simple applications but in practice many large applications have more complex requirements, for example the multiple input files or the creation of a directory hierarchy.
In such cases, users may write their own encoders by extending the BaseEncoder class.

{
 "T0":"$temp_init",
 "kappa":"$kappa",
 "t_env":"$t_env",
 "out_file":"$out_file"
}

As can be inferred from its name SimpleCSV reads CVS files produced by the cooling model code. Again many applications output results in different formats, potentially requiring bespoke Decoders. Having created an encoder, decoder and parameter space definition for our cooling app, we can add it to our campaign.

Add the app (automatically set as current app)
my_campaign.add_app(name="cooling",
 params=params,
 encoder=encoder,
 decoder=decoder)

The Sampler

The user specified which parameters will vary and their corresponding distributions. In this case the kappa and t_env parameters are varied, both according to a uniform distribution:

vary = {
 "kappa": cp.Uniform(0.025, 0.075),
 "t_env": cp.Uniform(15, 25)
}

To perform a polynomial chaos expansion we will create a PCESampler, informing it which parameters to vary, and what polynomial order to use for the PCE.

my_sampler = uq.sampling.PCESampler(vary=vary, polynomial_order=3)

Finally we set the campaign to use this sampler.

my_campaign.set_sampler(my_sampler)

Calling the campaign’s draw_samples() method will cause the specified number of samples to be added as runs to the campaign database, awaiting encoding and execution. If no arguments are passed to draw_samples() then all samples will be drawn, unless the sampler is not finite. In this case PCESampler is finite (produces a finite number of samples) and we elect to draw all of them at once:

my_campaign.draw_samples()

Execute Runs

my_campaign.populate_runs_dir() will create a directory hierarchy containing the encoded input files for every run that has not yet been completed. Finally, in this example, a shell command is executed in each directory to execute the simple test code. In practice (in a real HPC workflow) this stage would be best handled using, for example, a pilot job manager.

import os
my_campaign.populate_runs_dir()
my_campaign.apply_for_each_run_dir(uq.actions.ExecuteLocal("{} cooling_in.json".format(os.path.abspath('tutorial_files/cooling_model.py')), interpret="python3"))

Collation and analysis

Calling my_campaign.collate() at any stage causes the campaign to aggregate decoded simulation output for all runs which have not yet been collated.

my_campaign.collate()

This collated data is stored in the campaign database. An analysis element, here PCEAnalysis, can then be applied to the campaign’s collation result.

my_analysis = uq.analysis.PCEAnalysis(sampler=my_sampler, qoi_cols=["te"])
my_campaign.apply_analysis(my_analysis)

The output of this is dependent on the type of analysis element.

Get Descriptive Statistics
results = my_campaign.get_last_analysis()
stats = results['statistical_moments']['te']
per = results['percentiles']['te']
sobols = results['sobols_first']['te']

I don’t want to use Polynomial Chaos

If you wish to use something other than PCE, it is simply a matter of changing the sampling and analysis element used. For example, to use a Stochastic Collocation approach, replace the sampler line with:

my_sampler = uq.sampling.SCSampler(vary=vary, polynomial_order=3)

And the analysis can be done with:

my_analysis = uq.analysis.SCAnalysis(sampler=my_sampler, qoi_cols=["te"])
my_campaign.apply_analysis(my_analysis)

 Writing a custom encoder or decoder

Writing a custom encoder or decoder

EasyVVUQ ships with some relatively generic implementations of encoders and decoders, that can
work for simple codes. For example, GenericEncoder uses text substitution in a user provided template.
You can find examples of using GenericEncoder in previous tutorials
(Basic Tutorial, Cooling Coffee Cup).

However, many large, established simulation packages have more complex requirements, such as
multiple input files spread over a multi-layer directory hierarchy, and it is not possible for
to provide a ready-made Encoder adaptable to all cases. It is then necessary to write your own.

Writing a custom encoder

In essence, all that is needed is shown in the following snippet:

from easyvvuq.encoders import BaseEncoder

class MyCustomEncoder(BaseEncoder, encoder_name="my_custom_encoder"):

 def encode(self, params={}, target_dir=''):
 # User code goes here

This subclasses BaseEncoder (the parent class of all EasyVVUQ encoders), to make a new encoder
called, in this case, MyCustomEncoder. Note that this stage must pass the encoder_name arg. This
determines what EasyVVUQ will call the encoder in error messages etc.

The remaining work is to implement the encode() method for the encoder. This method must have the
following function signature:

def encode(self, params={}, target_dir=''):

This method will always be passed params - a dict containing the parameters and corresponding values
for a run of this app - and target_dir - the path to the directory in which this encoder’s output
should go.

Writing a custom decoder

A custom decoder can be created in a very similar manner to the encoder:

from easyvvuq.decoders import BaseDecoder

class MyCustomDecoder(BaseDecoder, decoder_name="my_custom_decoder"):

 def sim_complete(self, run_info=None):
 # User code goes here (method must return True or False)

 def parse_sim_output(self, run_info={}):
 # User code goes here (method must return a pandas dataframe)

The two methods that must be implemented here are sim_complete(),
which returns True if the simulation has completed (this is handled by
the decoder because it is an application specific issue), and
parse_sim_output(), which returns a dictionary containing the desired
output, distilled from the simulation output files. This dictionary
has to follow the following list of restrictions:

	Has to be one level deep.

	All keys are strings signifying output variable names.

	All the values are either numbers or lists of numbers. Use numbers
of scalar outputs and lists for vector outputs.

{
 "f1" : 0.3,
 "f2" : [0.2, 0.4],
 "z" : 328
}

 A Cooling Coffee Cup - Using Dask Jobqueue to Run on Clusters

A Cooling Coffee Cup - Using Dask Jobqueue to Run on Clusters

In this tutorial we expand the previous example and move our computations to computing
clusters. In order to run it you will need access to one. And if you
have access to one you most likely don’t need explaining what they are
or how they fit in the work you do. So we will skip that part. We will
also skip the parts that are the same as in the previous tutorial. We
only outline the parts that will be different from when you ran it on
your laptop. Luckily there aren’t that many differences.

Import necessary libraries

In addition we need to import the relevant Dask classes that will let us
set-up our cluster. Here we assume a SLURM cluster, however, other
options (PBS and so on) are possible. Please refer to Dask JobQueue
documentation [https://jobqueue.dask.org/en/latest/].

from dask.distributed import Client
from dask_jobqueue import SLURMCluster

Create a new Campaign

As in the Basic Tutorial, we start by creating the
campaign, the only difference is that we instantiate the CampaignDask class
instead of Campaign

my_campaign = uq.CampaignDask(name='coffee_pce')

Initialize Cluster

Provided that you have access to a computing cluster you can now run
your UQ workflow on it. You will need to know some technical details
about the compute nodes of your cluster. Most importantly you need to
know how many CPU cores does this node have and how much RAM. This
information is used to figure out the amount of resources we will
need, namely, how many nodes to reserve.

Here we describe a single node of an example cluster. Please note that
you don’t need to specify the resources you need for your run as
such. Only the resources available on a single node. Unless the
resources the job needs are fewer than the node provides. For example,
if the node has 48 cores and 64 gigabytes of memory

cluster = SLURMCluster(job_extra=['--cluster=mycluster'],
 queue='myqueue',
 cores=48, memory='64 GB')

Now you can allocate the resources needed for your UQ run using the
scale method. For full documentation refer to the API [https://jobqueue.dask.org/en/latest/api.html]. To ask for 96 cores,
for example, we can use

cluster.scale(96)

At this stage you can print the batch file that will be used to submit the
worker processes.

print(cluster.job_script())

Then we create a Dask client associated with this cluster.

client = Client(cluster)

Please note that after this point the jobs will be submitted to the
batch scheduler. They will take some time to actually start
executing. The code in the following section will block until the job
starts.

Execute Runs

The only difference here is that you will need to supply the client argument
to the call to apply_for_each_run_dir. The remainder is exactly the same as
before.

my_campaign.populate_runs_dir()
my_campaign.apply_for_each_run_dir(uq.actions.ExecuteLocal("python3 cooling_model.py cooling_in.json"), client)

At this stage the computation will block until the requested resources are
allocated and all the computations are completed.

Notes and Workarounds

Note that Dask JobQueue will want to establish a TCP connection
between the compute and login nodes. It is possible that the admins on
your system don’t allow this. The reasons for this are unclear but we
suspect they are mad with power. If that is the case, there is a quick
workaround. You should try running your script in interactive mode and
see if that solves the problem. For example, on SLURM it could be
something like this:

salloc --partition=interactivequeue

The system will then try to allocate resources for you to run the
interactive job and this might take a couple of moments. After that an
interactive mode prompt will appear. Commands that you execute there
will be run on compute nodes. You would then execute the script
normally, e.g.

python tutorial_files/easyvvuq_dask_tutorial.py

 A Reduced Version of the Fusion Workflow using Polynomial Chaos Expansion

A Reduced Version of the Fusion Workflow using Polynomial Chaos Expansion

Within VECMA the fusion contributors (from the Max Planck Institute of
Plasma Physics) are building a multi-scale workflow looking at coupling
small space scale and fast time scale turbulence models with a larger
space and slower time scale transport model [FUSION-WF].

The following tutorial is designed to provide a simplified version of
the workflow that can show key aspects of the uncertainty
quantification applied to the full fusion workflow.

For the purposes of this tutorial, we introduce some simplifications
from the full fusion workflow:

	We replace the turbulence code with a simple specification of the
transport coefficient specifying the thermal diffusivity.

	Instead of implementing the toroidal geometry used by the tokamak,
we implement a cylindrical geometry which corresponds to
straightening out the torus and increasing the aspect ratio (ratio
of major radius of the torus to the minor radius of the torus).

	This removes one code that is a part of the fusion workflow which
is the calculation of the equilibrium geometry.

	Instead of doing a time-dependent analysis, we look for the steady
state (or, more exactly, the long time) solution

[image: old/../images/cyl_jet.svg]
We will perform a Polynomial Chaos Expansion for this cylindrical
model of a tokamak.

The model solves for the temperature, \(T(\rho, t)\), across the
cross-section of the cylinder, (\(\rho\)), in the presence of a
specified thermal diffusivity and sources:

\[\frac{3}{2}\;\;\frac{\partial}{\partial t}\left(n(\rho,t) T(\rho,t)\right) =
\nabla_\rho \left[n(\rho,t) \chi(\rho,t) \nabla_\rho
(T(\rho,t))\right] + S(\rho, t)\]

with a boundary condition given by \(Te_{bc}\) and an initial
uniform temperature of 1000 eV; the quantities are

\(n(\rho,t)\) characterizes the plasma density

\(\chi(\rho,t)\) characterizes the thermal conductivity

\(S(\rho,t)\) characterizes the source

The geometry of the simulation is characterized by the minor radius
\(a_0\), major radius \(R_0\) and elongation \(E_0\)
(while the geometry is solved in the cylindrical approximation, the
actual radius used, \(a\), is adjusted on the basis of \(a_0\)
and \(E_0\)).

The density is specified by a modified tanh function (\(mtanh\)) [MTANH] given by

\[n(\rho_{norm},t) = \frac{b_{height} - b_{sol}}{2} \; mtanh\left(\frac{b_{pos} - \rho_{norm}}{2 b_{width}}, b_{slope}\right)+1)+b_{sol}\]

Where

\(b_{height}\) is the density at the top of the pedestal

\(b_{sol}\) is the density at the base of the pedestal

\(b_{pos}\) is the position of the pedestal

\(b_{width}\) is the pedestal width

and

\[mtanh(x, b_{slope}) = \frac{(1 + x \cdot b_{slope}) exp(x) - exp(-x)}{exp(x) + exp(-x)}\]

A typical density profile used in these simulation is shown below:

[image: old/../images/ne.svg]
The source is given by

\[S(\rho,t) = \alpha \cdot exp\left(-\left(\frac{\rho/a-H_0}{H_w}\right)^2\right)\]

where \(\alpha\) is chosen so that \(\int\; S(\rho,t) dV =
Qe_{tot}\), the total heating power.

In this example we will analyze this model using the polynomial chaos
expansion (PCE) UQ algorithm. The parameters that can be varied are:

	Quantity

	Min

	Max

	Default

	\(Qe_{tot}\)

	1.0e6

	50.0e6

	2e6

	\(H_0\)

	0.00

	1.0

	0

	\(H_w\)

	0.01

	100.0

	0.1

	\(Te_{bc}\)

	10.0

	1000.0

	100

	\(\chi\)

	0.01

	100.0

	1

	\(a_0\)

	0.2

	10.0

	1

	\(R_0\)

	0.5

	20.0

	3

	\(E_0\)

	1.0

	10.0

	1.5

	\(b_{pos}\)

	0.95

	0.99

	0.98

	\(b_{height}\)

	3e19

	10e19

	6e19

	\(b_{sol}\)

	2e18

	3e19

	2e19

	\(b_{width}\)

	0.005

	0.02

	0.01

	\(b_{slope}\)

	0.0

	0.05

	0.01

though we will restrict the variation to

	Quantity

	Distribution

	Range

	\(Qe_{tot}\)

	Uniform

	(1.8e6, 2.2e6)

	\(H_0\)

	Uniform

	(0.0, 0.2)

	\(H_w\)

	Uniform

	(0.1, 0.5),

	\(\chi\)

	Uniform

	(0.8, 1.2),

	\(Te_{bc}\)

	Uniform

	(80.0, 120.0)

for this analysis.

Below we provide a commented script that shows how the Campaign is built up and then employed.
We also provide an outline of how each element is setup.

EasyVVUQ Script Overview

We illustrate the intended workflow using the following basic example
script, a python implementation of the reduced fusion workflow model.

The input files for this tutorial are

	the fusion application
(fusion.py),

	the fusion application interface to uq
(fusion_model.py),

	an input template
(fusion.template),

	the EasyVVUQ workflow script
(easyvvuq_fusion_tutorial.py)

	the EasyVVUQ workflow script demonstrating the use of dask
(easyvvuq_fusion_dask_tutorial.py)

Note: the fusion tutorial uses the FiPy [FiPy] python package.

To run the script execute the following command

python3 easyvvuq_fusion_tutorial.py

Import necessary libraries

For this example we import both easyvvuq and chaospy (for the
distributions). EasyVVUQ will be referred to as ‘uq’ in the code.

import easyvvuq as uq
import chaospy as cp

Create a new Campaign

As in the Basic Tutorial, we start by
creating an EasyVVUQ Campaign. Here we call it ‘fusion_pce.’.

my_campaign = uq.Campaign(name='fusion_pce.')

Parameter space definition

The parameter space is defined using a dictionary. Each entry in the
dictionary follows the format:

"parameter_name": {"type" : "<value>", "min": <value>, "max": <value>, "default": <value>}

With a defined type, minimum and maximum value and default. If the
parameter is not selected to vary in the Sampler (see below) then the
default value is used for every run. In this example, our full
parameter space looks like the following:

params = {
 "Qe_tot": {"type": "float", "min": 1.0e6, "max": 50.0e6, "default": 2e6},
 "H0": {"type": "float", "min": 0.00, "max": 1.0, "default": 0},
 "Hw": {"type": "float", "min": 0.01, "max": 100.0, "default": 0.1},
 "Te_bc": {"type": "float", "min": 10.0, "max": 1000.0, "default": 100},
 "chi": {"type": "float", "min": 0.01, "max": 100.0, "default": 1},
 "a0": {"type": "float", "min": 0.2, "max": 10.0, "default": 1},
 "R0": {"type": "float", "min": 0.5, "max": 20.0, "default": 3},
 "E0": {"type": "float", "min": 1.0, "max": 10.0, "default": 1.5},
 "b_pos": {"type": "float", "min": 0.95, "max": 0.99, "default": 0.98},
 "b_height": {"type": "float", "min": 3e19, "max": 10e19, "default": 6e19},
 "b_sol": {"type": "float", "min": 2e18, "max": 3e19, "default": 2e19},
 "b_width": {"type": "float", "min": 0.005, "max": 0.02, "default": 0.01},
 "b_slope": {"type": "float", "min": 0.0, "max": 0.05, "default": 0.01},
 "nr": {"type": "integer", "min": 10, "max": 1000, "default": 100},
 "dt": {"type": "float", "min": 1e-3, "max": 1e3, "default": 100},
 "out_file": {"type": "string", "default": "output.csv"}
 }

App Creation

In this example the GenericEncoder and SimpleCSV, both included in the
core EasyVVUQ library, were used as the encoder/decoder pair for this
application.

encoder = uq.encoders.GenericEncoder(
 template_fname='tutorial_files/fusion.template',
 delimiter='$',
 target_filename='fusion_in.json')

decoder = uq.decoders.SimpleCSV(target_filename="output.csv",
 output_columns=["te", "ne", "rho", "rho_norm"])

GenericEncoder performs simple text substitution into a supplied
template, using a specified delimiter to identify where parameters
should be placed. The template is shown below ($ is used as the
delimiter). The template substitution approach is likely to suit most
simple applications but in practice many large applications have more
complex requirements, for example the multiple input files or the
creation of a directory hierarchy. In such cases, users may write
their own encoders by extending the BaseEncoder class.

{
 "Qe_tot": "$Qe_tot",
 "H0": "$H0",
 "Hw": "$Hw",
 "Te_bc": "$Te_bc",
 "chi": "$chi",
 "a0": "$a0",
 "R0": "$R0",
 "E0": "$E0",
 "b_pos": "$b_pos",
 "b_height": "$b_height",
 "b_sol": "$b_sol",
 "b_width": "$b_width",
 "b_slope": "$b_slope",
 "nr": "$nr",
 "dt": "$dt",
 "out_file": "$out_file"
}

As can be inferred from its name SimpleCSV reads CSV files produced by
the fusion model code. Again many applications output results in
different formats, potentially requiring bespoke Decoders. Having
created an encoder, decoder and parameter space definition for our
fusion app, we can add it to our campaign.

Add the app (automatically set as current app)
my_campaign.add_app(name="fusion",
 params=params,
 encoder=encoder,
 decoder=decoder)

The Sampler

The user specified which parameters will vary and their corresponding
distributions. In this case the \(Qe_{tot}\), \(H_0\),
\(H_w\), \(\chi\) and \(Te_{bc}\) parameters are varied, all
according to a uniform distribution:

vary = {
 "Qe_tot": cp.Uniform(1.8e6, 2.2e6),
 "H0": cp.Uniform(0.0, 0.2),
 "Hw": cp.Uniform(0.1, 0.5),
 "chi": cp.Uniform(0.8, 1.2),
 "Te_bc": cp.Uniform(80.0, 120.0)
 }

To perform a polynomial chaos expansion we will create a PCESampler,
informing it which parameters to vary, and what polynomial order to
use for the PCE.

my_campaign.set_sampler(uq.sampling.PCESampler(vary=vary, polynomial_order=3))

Calling the campaign’s draw_samples() method will cause the specified
number of samples to be added as runs to the campaign database,
awaiting encoding and execution. If no arguments are passed to
draw_samples() then all samples will be drawn, unless the sampler is
not finite. In this case PCESampler is finite (produces a finite
number of samples) and we elect to draw all of them at once:

my_campaign.draw_samples()

Execute Runs

my_campaign.populate_runs_dir() will create a directory hierarchy
containing the encoded input files for every run that has not yet been
completed. Finally, in this example, a shell command is executed in
each directory to execute the simple test code. In practice (in a real
HPC workflow) this stage would be best handled using, for example, a
pilot job manager.

import os
my_campaign.populate_runs_dir()
my_campaign.apply_for_each_run_dir(uq.actions.ExecuteLocal("{} fusion_in.json".format(os.path.abspath('tutorial_files/fusion_model.py')), interpret="python3"))

Collation and analysis

Calling my_campaign.collate() at any stage causes the campaign to
aggregate decoded simulation output for all runs which have not yet
been collated.

my_campaign.collate()

This collated data is stored in the campaign database. An analysis
element, here PCEAnalysis, can then be applied to the campaign’s
collation result.

my_campaign.apply_analysis(uq.analysis.PCEAnalysis(sampler=my_sampler, qoi_cols=["te", "ne", "rho", "rho_norm"]))

The output of this is dependent on the type of analysis element.

Get Descriptive Statistics
results = my_campaign.get_last_analysis()
stats = results['statistical_moments']['te']
per = results['percentiles']['te']
sobols = results['sobols_first']['te']

Typical results

The above workflow calculates the distribution of temeperatures as the
uncertain parameters are varied. A typical results is shown below.

[image: old/../images/Te.svg]
Here the mean temperature, the mean plus and minus one sigma, the 10
and 90 percentiles as well as the complete range are shown as a
function of \(\rho\).

The sensitivity of the results to the varying paramaters can be found
from the Sobol first

[image: old/../images/sobols_first.svg]
and total coefficients

[image: old/../images/sobols_total.svg]
Here it can be seen that the width of the heating source (“Hw”) is the
most important determiner of the central temperature, the heat
diffusivity (“chi”) at mid-radius and the boundary condition (“Te_bc”)
at the edge.

Running with dask

Only minor changes are necessary to run with dask. These can be found
in easyvvuq_fusion_dask_tutorial.py and are basically:

	changes so that matplotlib is not activated with an interactive
front-end if the code is run without an attached display

	allowing for an optional argument to specify whether to use dask
locally (“-l”) or in batch (the default)

	the importing of the appropriate dask components (we use SLURM for
the batch scheduler — other options are available in dask)

	a conditioning on ” __name__ == ‘__main__’” to prevent recursive
invocations from within dask

	invoking uq.CampaignDask() rather than uq.Campaign()

	setting up the dask workers

	with a local option,

	or using SLURM, here configured to use

	p.tok.openmp.2h QOS

	send a mail at completion of the SLURM job(s)

	use the p.tok.openmp partition (“queue”)

	8 cores per job

	8 processes per job

	8 GB per job

	32 workers (i.e. 4 SLURM jobs)

	specify the client when requesting “apply_for_each_run_dir”

	shutting down the dask workers

I don’t want to use Polynomial Chaos

If you wish to use something other than PCE, it is simply a matter of
changing the sampling and analysis element used. For example, to use a
Stochastic Collocation approach, replace the sampler line with:

my_campaign.set_sampler(uq.sampling.SCSampler(vary=vary, polynomial_order=3))

And the analysis can be done with:

my_campaign.apply_analysis(uq.analysis.SCAnalysis(sampler=my_campaign.get_active_sampler(), qoi_cols=["te", "ne", "rho", "rho_norm"]))

References

	FUSION-WF

	 See

	Olivier Hoenen, Luis Fazendeiro, Bruce D. Scott, Joris Borgdoff,
Alfons G. Hoekstra, Pär Strand, and David P. Coster:
Designing and running turbulence transport simulations using a distributed multiscale computing approach.
In 40th EPS Conference on Plasma Physics, EPS 2013; Espoo; Finland; 1 July 2013 through 5 July 2013, vol. 2, pp. 1094-1097. 2013.
http://publications.lib.chalmers.se/records/fulltext/185427/local_185427.pdf

	Falchetto, G.L., Coster, D., Coelho, R., Scott, B., Figini, L., Kalupin,
D., Nardon,E., Nowak, S., Alves, L.L., Artaud, J.F., et al.:
The European Integrated Tokamak Modelling (ITM) effort: achievements and first physics results.
Nuclear Fusion 54(4)(2014) 043018.
https://doi.org/10.1088/0029-5515/54/4/043018

	Luk, O. O., O. Hoenen, A. Bottino, B. D. Scott, and D. P. Coster:
Optimization of Multiscale Fusion Plasma Simulations within the ComPat Framework.
In 45th EPS Conference on Plasma Physics. European Physical Society, 2018.
http://ocs.ciemat.es/EPS2018PAP/pdf/P1.1102.pdf

	O. O. Luk, O. Hoenen, O. Perks, K. Brabazon, T. Piontek, P. Kopta, B. Bosak, A. Bottino,
B. D. Scott and D. P. Coster:
Application of the extreme scaling computing pattern on multiscale fusion plasma modelling
Phil. Trans. R. Soc. A.37720180152 (2019).
http://doi.org/10.1098/rsta.2018.0152

	Luk, O., Hoenen, O., Bottino, A., Scott, B., Coster, D.:
ComPat framework for multiscale simulations applied to fusion plasmas.
Computer Physics Communications (2019).
https://doi.org/10.1016/j.cpc.2018.12.021

	MTANH

	 See

	E. Stefanikova, M. Peterka, P. Bohm, P. Bilkova, M. Aftanas, M. Sos, J. Urban, M. Hron and R. Panek:
Fitting of the Thomson scatteringdensity and temperature profiles on the COMPASS tokamak.
Presented at 21st Topical Conference on High-Temperature Plasma Diagnostics
(HTPD 2016) in Madison, Wisconsin, USA and published in
Review of Scientific Instruments 87, 11E536 (2016); https://doi.org/10.1063/1.4961554.
https://pdfs.semanticscholar.org/5dc9/029eb9614a0128ae7c3f16ae6c4e54be4ac5.pdf

	The article cites as the source of the function: R. J. Groebener and T. N. Carlstrom,
Plasma Phys. Controlled Fusion 40, 673 (1998). https://doi.org/10.1088/0741-3335/40/5/021

	FiPy

	 See

	J. E. Guyer, D. Wheeler & J. A. Warren:
FiPy: Partial Differential Equations with Python.
Computing in Science & Engineering 11(3) pp. 6—15 (2009).
https://doi.org/10.1109/MCSE.2009.52, http://www.ctcms.nist.gov/fipy

 Hierarchical sparse grid tutorial

Hierarchical sparse grid tutorial

This tutorial shows how to use a sparse Stochastic Collocation (SC) sampler
in EasyVVUQ. We will assume you are familiar with the basic building
blocks of an EasyVVUQ Campaign. If not, see the basic tutorial
here [https://github.com/UCL-CCS/EasyVVUQ/blob/dev/docs/basic_tutorial.rst].

The complete code for this example can be found here [https://github.com/UCL-CCS/EasyVVUQ/blob/dev/tests/test_hierarchical_sparse_grid_sc.py]. This file
demonstates the sparse grid using a analytic test function, for which we compute
exact reference statistics.

Sparse grids

Let us briefly describe the concept behind sparse grids. In a standard EasyVVUQ
Campaign, an SC sampler object might be created via:

my_sampler = uq.sampling.SCSampler(vary=vary, polynomial_order=3,
 quadrature_rule="G")

Here the specified polynomial_order, and the number of inputs in vary, determine the
number of samples, which increases exponentially fast with an increasing amount of inputs. This
is the so-called curse of dimensionality. Sparse grids do not circumvent the curse of
dimensionality, although they can postpone its effect to higher dimensions. In the case of a standard
EasyVVUQ Canpaign, by setting polynomial_order=3 we create a sampling plan through a
single tensor product of one-dimensional quadrature rules with order 3 for every input. It is this tensor
product construction that leads to the exponential rise in cost. Sparse grids on the other hand, do not
create a single tensor product, but build the sampling plan from the ground up by using a linear combination
of tensor products involving 1D quadrature rules of different orders. For two inputs, we might for instance
consider using 1D quadrature rules of order [1, 1], [1, 2] and [2, 1], whereas a standard EasyVVUQ campaign
with polynomial_order=2 uses just [2,2]. If the chosen quadrature rule generates 1 point for order 1
and 3 points for order 2, then [2, 2] (the 2nd order rule for both dimensions) will generate 3*3 = 9 points.
For the sparse grid we have a linear combination of:

	[1, 1]: a single point in the 2D domain (X, Y)

	[1, 2]: a line of 3 points with constant X

	[2, 1]: a line of 3 points with constant Y

In the case of sparse grids it is common to select a nested quadrature rule. This means that the quadrature
rule of order p contains all points of the same rule of order p-1. When taking the linear combinations, a nested rule ensures that many points will conincide, which yields efficient sampling
plans, especially in higher dimensions. If our 1D rule of order 1 and 2 generates the points [0.5] and [0, 0.5, 1]
we obtain a sampling plan consisting of

	[1, 1]: [0.5, 0.5]

	[1, 2]: [0.5, 0.0], [0.5, 0.5], [0.5, 1.0]

	[2, 1]: [0.0, 0.5], [0.5, 0.5], [1.0, 0.5],

which gives a total of 5 unique points, compared to the 9 points of [2, 2].

Create a sparse SC sampler

An example sparse SC sampler is given by:

my_sampler = uq.sampling.SCSampler(vary=vary, polynomial_order=poly_order,
 quadrature_rule="C", sparse=True,
 growth=True)

Here "C" stands for the Clenshaw Curtis rule, which can be made nested by turning on the growth
flag. You can also select other quadrature rules, e.g. the standard Gaussian option ("G"). Not all
rules can be made nested though, see the Chaospy documentation [https://chaospy.readthedocs.io/en/master/quadrature.html]
for a list of all quadrature rules and their properties.

The rest of the Campaign proceed exactly as it would in the non-sparse case. The only exception is in the case of
a nested rule, in which case the sampling plan can be isotropically refined. This is done with the following command:

#update the sparse grid to the next level
my_sampler.next_level_sparse_grid()

#draw the new samples
my_campaign.draw_samples()
my_campaign.populate_runs_dir()

In the example [https://github.com/UCL-CCS/EasyVVUQ/blob/dev/tests/test_hierarchical_sparse_grid_sc.py] the grid
is refined once, after which the Sobol sensitivity indices are calculated and compared against the reference.

 MCMC With EasyVVUQ

MCMC With EasyVVUQ

In this tutorial we will show how to perform Markov Chain Monte Carlo sampling with EasyVVUQ.

MCMC Setup

MCMC setup:

campaign = uq.Campaign(name="mcmc", work_dir=tmp_path)
params = {
 "x1": {"type": "float", "default": 0.0},
 "x2": {"type": "float", "default": 0.0},
 "out_file": {"type": "string", "default": "output.json"}
}
encoder = uq.encoders.GenericEncoder(
 template_fname=os.path.abspath("tutorials/rosenbrock.template"), delimiter="$", target_filename="input.json")
decoder = uq.decoders.JSONDecoder("output.json", ["value"])
campaign.add_app(name="mcmc", params=params, encoder=encoder, decoder=decoder)
action = uq.actions.ExecutePython(rosenbrock)

MCMC Sampling

Sampling stage:

vary_init = {
 "x1": -3.0,
 "x2": 2.0
}
def q(x, b=0.1):
 return cp.J(cp.Normal(x['x1'], b), cp.Normal(x['x2'], b))
sampler = uq.sampling.MCMCSampler(vary_init, q, 'value')
campaign.set_sampler(sampler)
sampler.mcmc_sampling(campaign, action, 2000)

MCMC Analysis

Analysis stage:

df = campaign.get_collation_result()
analysis = uq.analysis.MCMCAnalysis(sampler, 'value')
result = analysis.analyse(df)

 Creating complex encoders using MultiEncoder and DirectoryBuilder

Creating complex encoders using MultiEncoder and DirectoryBuilder

While a user is always free to write their own, custom encoder (as discussed in the Custom Encoder tutorial)
it is generally easier to use existing encoders whenever possible. In some cases a single encoder may not be sufficient, but combining
multiple encoders together can achieve the desired effect.

For example, consider an application which takes two input files, A and B, but A can be generated using encoder1 and B
with a (generally) different encoder, encoder2. In such a case, EasyVVUQ provides the MultiEncoder element, which can combine
any number of encoders into a single encoder:

my_multiencoder = uq.encoders.MultiEncoder(encoder1, encoder2, ...)

Once created, this encoder can be set for an app, as with any other encoder.

This is particularly useful when used in conjunction with the DirectoryBuilder encoder.
For example, the following code will create a particular directory structure (as specified by directory_tree),
and then encode two files from template (using GenericEncoder), placing each file into a different
part of the created directory tree:

directory_tree = {'dir1': {'dir2': {'dir3': None, 'dir4': None}}, 'dir5': {'dir6': None}}

multiencoder = uq.encoders.MultiEncoder(

 uq.encoders.DirectoryBuilder(tree=directory_tree),

 uq.encoders.GenericEncoder(
 template_fname='template1.xml',
 delimiter='#',
 target_filename='dir1/dir2/dir3/app1input.xml'
),

 uq.encoders.GenericEncoder(
 template_fname='template2.csv',
 delimiter='$',
 target_filename='dir5/dir6/app2input.csv'
)
)

 Combining multiple samplers using Multisampler

Combining multiple samplers using Multisampler

There may be cases in which you want to generate runs using a combination of samplers, each acting
on a subset of the parameters.
For example, one may wish to carry out a Polynomial Chaos Expansion on some parameters (x and y), but for a set sequence of some other parameter (z).
In such a case you would want a sampler that combines a PCE sampler (for x and y) and a Sweep sampler (cycling through values of z).
There are, of course, far more complex situations than this too.

In EasyVVUQ such a case is addressed using a Multisampler.
For example, the following code creates a new sampler which combines three existing samples (sampler1, sampler2 and sampler3):

my_multisampler = uq.sampling.MultiSampler(sampler1, sampler2, sampler3)

Whilst this example involves 3 samplers, any number of samplers can be combined in the same manner.
Note that the ordering of the samplers does matter.
The last sampler in the list updates ‘fastest’ while the first sampler updates ‘slowest’.
Furthermore, every sampler in a multisampler must be finite (contain a finite number of samples).

Once created, this sampler can be added to the campaign object and used like any other:

my_campaign.set_sampler(my_multisampler)
my_campaign.draw_samples()

 Workflow Changes

Workflow Changes

Recently (since release v0.7.3) there have been some changes in the workflow of EasyVVUQ
which means that some existing scripts that use EasyVVUQ will need to be altered. There are
many changes, in fact, but here we will only concentrate on the changes that mean you will
have to change your existing scripts. I will try to summarise them below.

No More Collaters

You don’t need to explicitly create a collater anymore. The code that imports collaters will
fail with an import error. The rest did not change. You still need to call campaign.collate()
in order to collect all the simulation data from the decoders. You also don’t need to and can’t
specify a collater when adding an app to a campaign. So, for example

my_campaign.add_app(name="gauss",
 params=params,
 encoder=encoder,
 decoder=decoder,
 collater=collater)

would now become

my_campaign.add_app(name="gauss",
 params=params,
 encoder=encoder,
 decoder=decoder)

The call to campaign.get_collation_result() will return a pandas DataFrame as before. The resulting
DataFrame is now multi-indexed [https://pandas.pydata.org/pandas-docs/stable/user_guide/advanced.html].
The main difference here would be that each column is treated as if holding a vector argument. This is
probably best illustrated with an example.

Here is a valid example of such a DataFrame.

 run_id x1 x2 g
 0 0 0 0 1 2
0 0 0.046910 0.046910 0.046910 0.046910 0.093820
1 1 0.046910 0.230765 0.046910 0.230765 0.277675
2 2 0.046910 0.500000 0.046910 0.500000 0.546910
3 3 0.046910 0.769235 0.046910 0.769235 0.816145
4 4 0.046910 0.953090 0.046910 0.953090 1.000000
5 5 0.230765 0.046910 0.230765 0.046910 0.277675
6 6 0.230765 0.230765 0.230765 0.230765 0.461531
7 7 0.230765 0.500000 0.230765 0.500000 0.730765
8 8 0.230765 0.769235 0.230765 0.769235 1.000000
9 9 0.230765 0.953090 0.230765 0.953090 1.183855
10 10 0.500000 0.046910 0.500000 0.046910 0.546910
11 11 0.500000 0.230765 0.500000 0.230765 0.730765
12 12 0.500000 0.500000 0.500000 0.500000 1.000000
13 13 0.500000 0.769235 0.500000 0.769235 1.269235
14 14 0.500000 0.953090 0.500000 0.953090 1.453090
15 15 0.769235 0.046910 0.769235 0.046910 0.816145
16 16 0.769235 0.230765 0.769235 0.230765 1.000000
17 17 0.769235 0.500000 0.769235 0.500000 1.269235
18 18 0.769235 0.769235 0.769235 0.769235 1.538469
19 19 0.769235 0.953090 0.769235 0.953090 1.722325
20 20 0.953090 0.046910 0.953090 0.046910 1.000000
21 21 0.953090 0.230765 0.953090 0.230765 1.183855
22 22 0.953090 0.500000 0.953090 0.500000 1.453090
23 23 0.953090 0.769235 0.953090 0.769235 1.722325
24 24 0.953090 0.953090 0.953090 0.953090 1.906180

It has two input variables x1 and x2 and one vector valued qoi (quantity of interest)
g with three elements. Any scalar is treated as a vector with one element. This is mainly of interest for people
developing analysis classes but probably useful to know to users too. If you want to access
the columns of the qoi you can do so (assuming df is collation result) df[g] would
return a data frame with the three columns that make up g. You can also call df[g, 1] to
get a particular element. In which case it will return a corresponding column (second one in this
case).

Decoders Must Return Dictionaries

Decoders are now required to return dictionaries. These dictionaries must contain qoi’s as keys
and the values can be either float or lists. In case the values are lists the qoi will be interpreted
as a vector. If your simulation produces more complex output you need to pre-process it to fit into this format.
An example of a valid dictionary that could be returned by a decoder could be

{'y1': 3.14, 'y2': [1, 2]}

You can also enforce checking the output of your decoders using Cerberus [https://docs.python-cerberus.org/en/stable/].
To this end you need to create a validation dictionary in the Cerberus format. You then need to specify this when
calling add_app on a campaign. For example, if the ouput of the decoder is the dictionary above, you can
use the following validator

validator = {
 'y1' : {'type': 'float', 'required': True},
 'y2' : {'type': 'list', required: True, minlength: 2, maxlength: 2}
}
campaign.add_app(name="gauss",
 params=params,
 encoder=encoder,
 decoder=decoder,
 decoderspec=validator)

Each time the decoder output is read it will be checked using this specification. This can be used for
debugging and validation purposes. For more information for how to write the validator please consult
the Cerberus project website.

Analysis Classes Return an AnalysisResults Instance

In an effort to provide a consistent interface to the user, all classes must return the results in the same
way. The idea is that the users would not need to modify their code if they want to swap the analysis method
for another one. Of course, this is to some extent not possible because different analysis methods have different
capabilities in terms of what information they can provide. But we must strive for a consistent interface
as much as possible. So from now on when you call campaign.get_last_analysis() or when you use the analyse()
method of an analysis class explicitly it will return an instance of AnalysisResults. In order to get sobol
indices from this object see the example:

>>> results = campaign.get_last_analysis()
>>> results.sobols_first()
{'f': {'x1': array([0.610242]), 'x2': array([0.26096511])}}
>>> results.sobols_first('f')
{'x1': array([0.610242]), 'x2': array([0.26096511])}
>>> results.sobols_first('f', 'x1')
array([0.610242])

If f is one your qois and x1 and x2 are your input variables you can get the first order sobol indices for
all qois and all inputs by calling results.sobols_first(), you can get sobol indices for f by calling
results.sobols_first(f) and you can get the index for one of the quantities by calling results.sobols_first(f, x2).
Also implemented in some of the classes are results.sobols_second() and results.sobols_total() which work in a similar way.
Where make sense the classes will also provide a surrogate() method which will return an object that will act
as a surrogate for your simulation.

You can get descriptive statistcs by calling results.describe().

 EasyVVUQ tutorials

EasyVVUQ tutorials

Here we have collected some tutorials on various aspects of EasyVVUQ.

	Basic Tutorial

	A Cooling Coffee Cup with Polynomial Chaos Expansion

	A Cooling Coffee Cup - Using Dask Jobqueue to Run on Clusters

	A Reduced Version of the Fusion Workflow using Polynomial Chaos Expansion

	Combining multiple samplers using Multisampler

	Writing a custom encoder or decoder

	Creating complex encoders using MultiEncoder and DirectoryBuilder

	Hierarchical sparse grid tutorial

	Validation by comparing QoI distributions

 Validation by comparing QoI distributions

Validation by comparing QoI distributions

This tutorial shows how to use a Validation Similarities pattern in EasyVVUQ.

We test here two quantities of interest (QoI) represented by two analytical functions with Gaussian uncertainties.

The first function is a parabolic function:

mu1 = (y - 50.)**2 / 500.
sig1 = 0.2
dist1 = chaospy.Normal(mu1, sig1)

The second function a constant but with changing uncertainty on one side:

mu2 = 2.5
sig2 = 0.1 + 0.01 * y
dist2 = chaospy.Normal(mu2, sig2)

In the upper pannel of the figure given below, you see how these functions look when we are varing y in the intervalle [0, 100].

Validations metrics

In EasyVVUQ, we implemented the calculation of three different metrics:
Hellinger, Jensen-Shannon and Wasserstein (cf. references below for more details). This allows us to compute distances between two QoI distributions.

QoI distributions

We can use Chaospy to compute the probability densities and the cummulative distributions functions needed for the above-mentioned metrics:

Probabily densities: for Hellinger and Jensen-Shannon
p1 = dist1.pdf(x)
p2 = dist2.pdf(x)

Cummulative distributions (with weight): for Wasserstein
dx = x[-1] - x[0]
c1 = dx * dist1.cdf(x)
c2 = dx * dist2.cdf(x)

The sampling values x can be computed using the min/max values of a common large support of QoI distrubtions, for example:

x = np.linspace(min_value, max_value, 1000, endpoint=True)

Note 1: The min/max values can be obtained from lower and upper bound of the distributions. In case of univarainte distribution, we can use: dist.lower[0] and dist.upper[0].

Note 2: Distribution based on samples

To build QoI distribution from list of samples that resutls fron UQ simulations, observations or measurements, we can use:

dist = chaospy.SampleDist(samples)

It estimates a distribution from the given samples by constructing a kernel density estimator (KDE).

Validate similarities

Once probabily densities functions (or Cummulative distributions) are comupted for each QoI, we create a validater, object of EasyVVUQ, and get the distance using compare routine. We can use for example Hellinger metric by comparing two lists of probabily densities, pdf1 and pdf2:

Validater based on Hellinger metric
validater = easyvvuq.comparison.ValidateSimilarityHellinger()
distance = validater.compare(pdf1, pdf2)

The complete code for this example, using other metrics, can be found here [https://github.com/UCL-CCS/EasyVVUQ/blob/dev/docs/tutorial_files/validate_similarities.py].

Finally, in the lower panel of the the different distances between QoI 1 and Qo 2 are displayed:

[image: old/../images/validation.png]

The first two are yielding answers between 0 (zero distance: identical distributions) and 1 (very different), Wasserstein instead are unrestricted with a lower limit of zero.

References

Hellinger distance [https://en.wikipedia.org/wiki/Hellinger_distance]

Jensen-Shannon divergence [https://en.wikipedia.org/wiki/Jensen%E2%80%93Shannon_divergence]

Wasserstein metric [https://en.wikipedia.org/wiki/Wasserstein_metric]

 Workflow Changes

Workflow Changes

Recently (since release v0.7.3) there have been some changes in the workflow of EasyVVUQ
which means that some existing scripts that use EasyVVUQ will need to be altered. There are
many changes, in fact, but here we will only concentrate on the changes that mean you will
have to change your existing scripts. I will try to summarise them below.

No More Collaters

You don’t need to explicitly create a collater anymore. The code that imports collaters will
fail with an import error. The rest did not change. You still need to call campaign.collate()
in order to collect all the simulation data from the decoders. You also don’t need to and can’t
specify a collater when adding an app to a campaign. So, for example

my_campaign.add_app(name="gauss",
 params=params,
 encoder=encoder,
 decoder=decoder,
 collater=collater)

would now become

my_campaign.add_app(name="gauss",
 params=params,
 encoder=encoder,
 decoder=decoder)

The call to campaign.get_collation_result() will return a pandas DataFrame as before. The resulting
DataFrame is now multi-indexed [https://pandas.pydata.org/pandas-docs/stable/user_guide/advanced.html].
The main difference here would be that each column is treated as if holding a vector argument. This is
probably best illustrated with an example.

Here is a valid example of such a DataFrame.

 run_id x1 x2 g
 0 0 0 0 1 2
0 0 0.046910 0.046910 0.046910 0.046910 0.093820
1 1 0.046910 0.230765 0.046910 0.230765 0.277675
2 2 0.046910 0.500000 0.046910 0.500000 0.546910
3 3 0.046910 0.769235 0.046910 0.769235 0.816145
4 4 0.046910 0.953090 0.046910 0.953090 1.000000
5 5 0.230765 0.046910 0.230765 0.046910 0.277675
6 6 0.230765 0.230765 0.230765 0.230765 0.461531
7 7 0.230765 0.500000 0.230765 0.500000 0.730765
8 8 0.230765 0.769235 0.230765 0.769235 1.000000
9 9 0.230765 0.953090 0.230765 0.953090 1.183855
10 10 0.500000 0.046910 0.500000 0.046910 0.546910
11 11 0.500000 0.230765 0.500000 0.230765 0.730765
12 12 0.500000 0.500000 0.500000 0.500000 1.000000
13 13 0.500000 0.769235 0.500000 0.769235 1.269235
14 14 0.500000 0.953090 0.500000 0.953090 1.453090
15 15 0.769235 0.046910 0.769235 0.046910 0.816145
16 16 0.769235 0.230765 0.769235 0.230765 1.000000
17 17 0.769235 0.500000 0.769235 0.500000 1.269235
18 18 0.769235 0.769235 0.769235 0.769235 1.538469
19 19 0.769235 0.953090 0.769235 0.953090 1.722325
20 20 0.953090 0.046910 0.953090 0.046910 1.000000
21 21 0.953090 0.230765 0.953090 0.230765 1.183855
22 22 0.953090 0.500000 0.953090 0.500000 1.453090
23 23 0.953090 0.769235 0.953090 0.769235 1.722325
24 24 0.953090 0.953090 0.953090 0.953090 1.906180

It has two input variables x1 and x2 and one vector valued qoi (quantity of interest)
g with three elements. Any scalar is treated as a vector with one element. This is mainly of interest for people
developing analysis classes but probably useful to know to users too. If you want to access
the columns of the qoi you can do so (assuming df is collation result) df[g] would
return a data frame with the three columns that make up g. You can also call df[g, 1] to
get a particular element. In which case it will return a corresponding column (second one in this
case).

Decoders Must Return Dictionaries

Decoders are now required to return dictionaries. These dictionaries must contain qoi’s as keys
and the values can be either float or lists. In case the values are lists the qoi will be interpreted
as a vector. If your simulation produces more complex output you need to pre-process it to fit into this format.
An example of a valid dictionary that could be returned by a decoder could be

{'y1': 3.14, 'y2': [1, 2]}

You can also enforce checking the output of your decoders using Cerberus [https://docs.python-cerberus.org/en/stable/].
To this end you need to create a validation dictionary in the Cerberus format. You then need to specify this when
calling add_app on a campaign. For example, if the ouput of the decoder is the dictionary above, you can
use the following validator

validator = {
 'y1' : {'type': 'float', 'required': True},
 'y2' : {'type': 'list', required: True, minlength: 2, maxlength: 2}
}
campaign.add_app(name="gauss",
 params=params,
 encoder=encoder,
 decoder=decoder,
 decoderspec=validator)

Each time the decoder output is read it will be checked using this specification. This can be used for
debugging and validation purposes. For more information for how to write the validator please consult
the Cerberus project website.

Analysis Classes Return an AnalysisResults Instance

In an effort to provide a consistent interface to the user, all classes must return the results in the same
way. The idea is that the users would not need to modify their code if they want to swap the analysis method
for another one. Of course, this is to some extent not possible because different analysis methods have different
capabilities in terms of what information they can provide. But we must strive for a consistent interface
as much as possible. So from now on when you call campaign.get_last_analysis() or when you use the analyse()
method of an analysis class explicitly it will return an instance of AnalysisResults. In order to get sobol
indices from this object see the example:

>>> results = campaign.get_last_analysis()
>>> results.sobols_first()
{'f': {'x1': array([0.610242]), 'x2': array([0.26096511])}}
>>> results.sobols_first('f')
{'x1': array([0.610242]), 'x2': array([0.26096511])}
>>> results.sobols_first('f', 'x1')
array([0.610242])

If f is one your qois and x1 and x2 are your input variables you can get the first order sobol indices for
all